ecole de musique piano
     
menu
 
 
 
 
 
 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

 

 

 

 

 

 

 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

Réalisation : 23 juin 2005 - Mise en ligne : 23 juin 2005
*         document 1 document 2 document 3
*         niveau 1 niveau 2 niveau 3
*
Descriptif
Métaux, semi-conducteurs, ou même supraconducteurs transportant un courant électrique sans aucune résistance, les matériaux présentent une diversité de propriétés électroniques remarquable, mise à profit dans de nombreuses applications qui font partie de notre quotidien. La chimie de l'état solide, en explorant les très nombreuses combinaisons entre éléments pour élaborer des structures de plus en plus complexes, nous invite à un véritable jeu de construction avec la matière, source de nouvelles découvertes. En même temps, le développement de techniques permettant d'élaborer, de structurer, et de visualiser ces matériaux à l'échelle de l'atome, ouvre d'immenses perspectives. Des lois de la mécanique quantique qui régissent le comportement d'un électron, aux propriétés d'un matériau à l'échelle macroscopique, c'est une invitation au voyage au coeur des matériaux que propose cette conférence.


Documents pédagogiques

Transcription de la 580e conférence de l'Université de tous les savoirs prononcée le 23 juin 2005
De l'atome au cristal : Les propriétés électroniques de la matière
Par Antoine Georges
Les ordres de grandeur entre l'atome et le matériau :
1. Il existe entre l'atome et le matériau macroscopique un très grand nombre d'ordres de grandeur, d'échelles de longueur. Prenons l'exemple d'un lingot d'or : quelqu'un muni d'une loupe très puissante pourrait observer la structure de ce matériau à l'échelle de l'atome : il verrait des atomes d'or régulièrement disposés aux nSuds d'un réseau périodique. La distance entre deux de ces atomes est de l'ordre de l'Angstrom, soit 10-10m. Ainsi, dans un lingot cubique de un millimètre de côté, il y a 10 millions (107) d'atomes dans chaque direction soit 1021 atomes au total ! Les échelles spatiales comprises entre la dimension atomique et macroscopique couvrent donc 7 ordres de grandeur. Il s'agit alors de comprendre le fonctionnement d'un système composé de 1021 atomes dont les interactions sont régies par les lois de la mécanique quantique.
2. Malheureusement, une telle loupe n'existe évidemment pas. Cependant, il est possible de voir les atomes un par un grâce à des techniques très modernes, notamment celle du microscope électronique à effet tunnel. Il s'agit d'une sorte de « gramophone atomique », une pointe très fine se déplace le long d'une surface atomique et peut détecter d'infimes changements de relief par variation du courant tunnel (voir plus loin). Cette découverte a valu à ses inventeurs le prix Nobel de physique de 1986 à Gerd Karl Binnig et Heinrich Rohrer (Allemagne).
3. Nous pouvons ainsi visualiser les atomes mais aussi les manipuler un par un au point de pouvoir « dessiner » des caractères dont la taille ne dépasse pas quelques atomes ! (Le site Internet www.almaden.ibm.com/vis/stm/gallery.html offre de très belles images de microscopie à effet tunnel). Cette capacité signe la naissance du domaine des nanotechnologies où la matière est structurée à l'échelle atomique.
4. Les physiciens disposent d'autres « loupes » pour aller regarder la matière à l'échelle atomique. Parmi elles, le synchrotron est un grand anneau qui produit un rayonnement lumineux très énergétique et qui permet de sonder la structure des matériaux, des molécules ou des objets biologiques, de manière statique ou dynamique. Les applications de ce genre de loupe sont innombrables en physique des matériaux, chimie, biologie et même géologie (par pour l'étude des changements structuraux des matériaux soumis à de hautes pressions).
5. Il existe encore bien d'autres « loupes » comme par exemple la diffusion de neutrons, la spectroscopie de photo-émission, la résonance magnétique... Dans la diffusion de neutrons, un neutron pénètre un cristal pour sonder la structure magnétique du matériau étudié.
La grande diversité des matériaux :
6. Ces différentes techniques révèlent la diversité structurale des matériaux, qu'ils soient naturels ou artificiels. Le sel de cuisine, par exemple, a une structure cristalline très simple. En effet, il est composé d'atomes de sodium et de chlore régulièrement alternés. Il existe également des structures plus complexes, comme par exemple les nanotubes de carbone obtenus en repliant des feuilles de graphite sur elles-mêmes ou la célèbre molécule C60 en forme de ballon de football composée de 60 atomes de carbone (fullerènes)
7. Tous ces matériaux peuvent être soit présents à l'état naturel soit élaborés de manière artificielle. Cette élaboration peut être faite plan atomique par plan atomique en utilisant une technique appelée « épitaxie par jet moléculaire » dans laquelle un substrat est bombardé par des jets moléculaires. Les atomes diffusent pour former des couches monoatomiques. Cette technique permet alors de fabriquer des matériaux contrôlés avec une précision qui est celle de l'atome.
8. La diversité des matériaux se traduit donc pas une grande diversité des structures, mais aussi de leurs propriétés électroniques. Par exemple, la résistivité (c'est-à-dire la capacité d'un matériau à s'opposer au passage d'un courant : R=U/I) varie sur 24 ordres de grandeurs entre de très bons conducteurs et un très bon isolant, ce qui est encore bien plus que les 7 ordres de grandeurs des dimensions spatiales. Il existe donc des métaux (qui sont parfois de très bons conducteurs), des isolants (de très mauvais conducteurs), des semi-conducteurs et même des supraconducteurs. Ces derniers sont des métaux, qui en dessous d'une certaine température, n'exercent aucune forme de résistance et ne dissipent aucune énergie. D'autres matériaux encore voient leur gradient thermique évoluer en fonction du courant qui les traverse, ceci permet par exemple de fabriquer du « froid » avec de l'électricité ou fabriquer de l'électricité avec de la chaleur, ce sont des thermoélectriques. Enfin, la résistivité de certains matériaux est fonction du champ magnétique dans lequel ils sont placés.
9. Ces diversités, autant structurales qu'électroniques, sont et seront de plus en plus mises à profit dans d'innombrables applications. Nous pouvons citer parmi elles, le transistor, le circuit intégré, le lecteur CD, l'imagerie par résonance magnétique etc. Derrière ces applications pratiques, il y a des problèmes de physique et de chimie fondamentales, et pour parfaitement comprendre l'origine de cette diversité, il faut remonter aux lois de la mécanique quantique. Il s'agit donc de jeter un pont entre l'échelle macroscopique et le monde quantique, à travers ces fameux 7 ordres de grandeurs. Particulièrement dans ce domaine, les sciences théoriques et expérimentales interagissent énormément. Nous allons donc partir de l'échelle atomique pour essayer de comprendre le comportement macroscopique d'un matériau.
De l'atome au matériau :
10. Commençons donc par la structure atomique. Un atome est composé d'un noyau, autour duquel gravitent des électrons. L'électron est environ 2000 fois plus léger que les protons et neutrons, constituants de base du noyau. La taille de cet ensemble est d'environ 10-10m (un Angstrom).
11. Le système {noyau+électron} semble comparable au système {Terre+soleil}, dans ce cas, l'électron tournerait sur une orbite bien régulière autour du noyau. Il n'en n'est rien. Même si les physiciens ont, pour un temps, cru au modèle planétaire de l'atome, nous savons depuis les débuts de la mécanique quantique que le mouvement de l'électron est bien différent de celui d'une planète !
12. La première différence notable est que l'électron ne suit pas une trajectoire unique. En fait, nous ne pouvons trouver l'électron qu'avec une certaine probabilité dans une région de l'espace. Cette région est appelée orbitale atomique. La forme de ce nuage de probabilités dépend de l'énergie de l'électron et de son moment cinétique. Si cette région est sphérique, on parle d'orbitale « s », (cas de l'atome d'hydrogène où seul un électron tourne autour du noyau). On parle d'orbitale « p » lorsque le nuage de probabilités est en forme de 8, (atome d'oxygène). Enfin, lorsque ce nuage prend une forme de trèfle à quatre feuilles, on parle d'orbitale « d » (atome de fer). Ainsi, il n'existe pas de trajectoires à l'échelle quantique, mais uniquement des probabilités de présence.
13. De plus, l'énergie d'un électron ne peut prendre que certaines valeurs bien déterminées, l'énergie est quantifiée (origine du terme quantique). La localisation de ces différents niveaux d'énergies et la transition entre ces niveaux par émission ou par absorption a été à l'origine de la mécanique quantique. Ces travaux ont valu à Niels Bohr le prix Nobel de physique de 1922. L'état d'énergie le plus bas est appelé état fondamental de l'atome. Il est par ailleurs possible d'exciter l'électron (avec de la lumière, par exemple) vers des niveaux d'énergie de plus en plus élevés. Ceci est connu grâce aux spectres d'émission et d'absorption de l'atome, qui reflètent les différents niveaux d'énergie possibles.
14. La troisième particularité du mouvement de l'électron est son Spin, celui-ci peut être représenté par une représentation imagée : l'électron peut tourner sur lui-même vers la gauche ou vers la droite, en plus de sa rotation autour du noyau. On parle de moment cinétique intrinsèque ou de deux états de Spin possibles. Pauli, physicien autrichien du XXéme siècle, formula le principe d'exclusion, à savoir qu'un même état d'énergie ne peut être occupé par plus de deux électrons de Spin opposé. Nous verrons plus loin qu'il est impossible de connaître l'état macroscopique d'un matériau sans tenir compte du principe d'exclusion de Pauli. Pour l'atome d'hélium par exemple, la première (et seule) couche contient deux atomes et deux seulement, il serait impossible de rajouter un atome dans cette couche, elle est dite complète.
15. On peut considérer grâce à ces trois principes (description probabiliste, niveaux d'énergies quantifiés et principe d'exclusion) que l'on remplit les couches électroniques d'un atome avec les électrons qui le constituent. Les éléments purs, dans la nature, s'organisent alors de manière périodique, selon la classification de Mendeleïev. Cette classification a été postulée de manière empirique bien avant le début de la mécanique quantique, mais cette organisation reflète le remplissage des couches atomiques, en respectant le principe d'exclusion de Pauli.
16. Un autre aspect du monde quantique est l'effet tunnel. Dans le microscope du même nom, cet effet est mis à profit pour mesurer une variation de relief. L'effet tunnel est une sorte de « passe-muraille quantique ». En mécanique classique, un personnage qui veut franchir un obstacle doit augmenter son niveau d'énergie au dessus d'un certain niveau. En mécanique quantique, en revanche, il est possible de franchir cet obstacle avec une certaine probabilité même si notre énergie est inférieure au potentiel de l'obstacle. Bien sûr, cette probabilité diminue à mesure que cette différence d'énergie augmente.
17. Cet effet tunnel assure la cohésion des solides, et permet aussi à un électron de se délocaliser sur l'ensemble d'un solide. Cet effet tunnel est possible grâce à la dualité de l'électron : il est à la fois une particule et une onde. On peut mettre en évidence cette dualité grâce à l'expérience suivante : une source émet des électrons un par un, ceux-ci ont le choix de passer entre deux fentes possibles. La figure d'interférence obtenue montre que, bien que les électrons soient émis un par un, ils se comportent de manière ondulatoire.
18. Les électrons des couches externes de l'atome (donc les moins fortement liés au noyau) vont pouvoir se délocaliser d'un atome à l'autre par effet tunnel. Ces « sauts », sont à l'origine de la cohésion d'un solide et permettent également la conduction d'un courant électronique à travers tout le solide.
19. Une autre conséquence de cet effet tunnel est que l'énergie d'un solide n'est pas une simple répétition n fois des niveaux d'énergie de chaque atome isolé. En réalité, il apparaît une série d'énergies admissibles qui se répartissent dans une certaine gamme d'énergie, cette gamme est appelée bande d'énergie permise. D'autres gammes restent interdites. Ainsi, si les atomes restent éloignés les uns des autres, les bandes d'énergies admises sont très étroites, mais à mesure que la distance inter-atomique diminue, ces bandes s'élargissent et le solide peut alors admettre une plus large gamme de niveaux d'énergie.
20. Nous pouvons penser, comme dans la classification périodique, que les électrons remplissent ces bandes d'énergies, toujours en respectant le principe d'exclusion de Pauli. L'énergie du dernier niveau rempli est appelée énergie du niveau de Fermi. La manière dont se place ce dernier niveau rempli va déterminer la nature du matériau (métal ou isolant). Si le niveau de Fermi se place dans une bande d'énergie admise, il sera très facile d'exciter les électrons, le matériau sera donc un métal. Si au contraire le niveau de Fermi se place dans une bande d'énergie interdite, il n'est pas possible d'exciter les électrons en appliquant une petite différence de potentiel, nous avons donc affaire à un isolant. Enfin, un semi-conducteur est un isolant dont la bande d'énergie interdite (« gap », en anglais), est suffisamment petite pour que l'on puisse exciter un nombre significatif de porteurs de charge simplement avec la température ambiante.
Nous voyons donc que l'explication de propriétés aussi courantes des matériaux repose sur les principes généraux de la mécanique quantique.
21. Ainsi, dans un solide constitué d'atomes dont la couche électronique externe est complète, les électrons ne peuvent sauter d'un atome à l'autre sans violer le principe d'exclusion de Pauli. Ce solide sera alors un isolant.
22-23. En réalité, les semi-conducteurs intrinsèques (les matériaux qui sont des semi-conducteurs à l'état brut) ne sont pas les plus utiles. On cherche en fait à contrôler le nombre de porteurs de charge que l'on va induire dans le matériau. Pour cela, il faut créer des états d'énergies très proches des bandes permises (bande de conduction ou bande de Valence). On introduit à ces fins des impuretés dans le semi-conducteur (du bore dans du silicium, par exemple) pour fournir ces porteurs de charges. Si on fournit des électrons qui sont des porteurs de charges négatifs, on parlera de dopage N. Si les porteurs de charges sont des trous créés dans la bande de Valence, on parlera de dopage P.
24. L'assemblage de deux semi-conducteurs P et N est la brique de base de toute l'électronique moderne, celle qui permet de construire des transistors (aux innombrables applications : amplificateurs, interrupteurs, portes logiques, etc.). Le bond technologique dû à l'invention du transistor dans les années 1950 repose donc sur tout l'édifice théorique et expérimental de la mécanique quantique. L'invention du transistor a valu le prix Nobel en 1956 à Brattain, Shockley et Bardeen. Le premier transistor mesurait quelques centimètres, désormais la concentration dans un circuit intégré atteint plusieurs millions de transistors au cm². Il existe même une célèbre loi empirique, proposée par Moore, qui observe que le nombre de transistors que l'on peut placer sur un microprocesseur de surface donnée double tous les 18 mois. Cette loi est assez bien vérifiée en pratique depuis 50 ans !
25. En mécanique quantique, il existe un balancier permanent entre théorie et expérience. La technologie peut induire de nouvelles découvertes fondamentales, et réciproquement.
Ainsi, le transistor à effet de champ permet de créer à l'interface entre un oxyde et un semi-conducteur un gaz d'électrons bidimensionnel, qui a conduit à la découverte de « l'effet Hall quantifié ».
26. Cette nappe d'électron présente une propriété remarquable : lorsqu'on applique un champ magnétique perpendiculaire à sa surface, la chute de potentiel dans la direction transverse au courant se trouve quantifiée de manière très précise. Ce phénomène est appelé effet Hall entier (Klaus von Klitzing, prix Nobel 1985) ou effet Hall fractionnaire (Robert Laughlin, Horst Stormer et Daniel Tsui, prix Nobel 1998).
27. L'explication de ces phénomènes fait appel à des concepts fondamentaux de la physique moderne comme le phénomène de localisation d'Anderson, qui explique l'effet des impuretés sur la propagation des électrons dans un solide. Nous voyons donc encore une fois cette interaction permanente entre technologie et science fondamentale.
La supraconductivité :
28. Il existe donc des métaux, des isolants, des semi-conducteurs. Il existe un phénomène encore plus extraordinaire : la supraconductivité. Il s'agit de la manifestation d'un phénomène quantique à l'échelle macroscopique : dans un métal « normal », la résistance tend vers une valeur finie non nulle lorsque la température tend vers 0 alors que dans un métal supraconducteur, la résistance s'annule en dessous d'une certaine température dite critique. Les perspectives technologiques offertes par la supraconductivité paraissent donc évidentes car il serait alors possible de transporter un courant sans aucune dissipation d'énergie. Le problème est de contrôler la qualité des matériaux utilisés, et il serait évidemment merveilleux de pouvoir réaliser ce phénomène à température ambiante...
29. La supraconductivité a été découverte par Kammerlingh Onnes en 1911 quand il refroidit des métaux avec de l'hélium liquide à une température d'environ 4 degrés Kelvin.
30. Ce phénomène ne fut expliqué que 46 ans plus tard, car il fallait tout l'édifice de la mécanique quantique pour réellement le comprendre. Nous devons cette explication théorique à Bardeen, Cooper et Schieffer à la fin des années 1950.
31. Dans un métal, il y a une source naturelle d'attraction entre les électrons. On peut imaginer que chaque électron déforme légèrement le réseau cristallin et y attire un autre électron pour former ce que l'on nomme une paire de Cooper. Ces paires peuvent échapper au principe d'exclusion de Pauli car elles ont un Spin 0. Elles se comportent alors comme des bosons et non plus comme des fermions, et s'écroulent dans un même état d'énergie pour former un état collectif. Le matériau a un comportement analogue à l'état de superfluide de l'hélium 4. Toutes ces paires de Cooper sont donc décrites par une unique fonction d'onde, c'est un état quantique macroscopique. Il existe donc de nombreuses propriétés qui révèlent cet état quantique à l'échelle du matériau.
32. A la fin des années 1950, la théorie de la supraconductivité est enfin comprise et le but est maintenant d'augmenter la température critique. Une véritable course est alors lancée, mais celle-ci n'eut pas que des succès. Alors que en 1911 Kammerlingh Onnes observait la supraconductivité du mercure à une température de 4K, à la fin des années 80, nous en étions encore à environ 30K. En 1986, cette température critique fait un bond considérable et se trouve aujourd'hui aux alentours des 140K. La température de l'azote liquide étant bien inférieure à ces 140K, il est désormais moins coûteux d'obtenir des supraconducteurs.
33. Ces supraconducteurs possèdent des propriétés étonnantes. Par exemple, un champ magnétique ne peut pénétrer à l'intérieur d'un matériau supraconducteur. Ceci permet de faire léviter un morceau de supraconducteur en présence d'un champ magnétique !
34. Cette « lévitation magnétique » offre de nouvelles perspectives : il est par exemple possible de faire léviter un train au dessus de ses rails, il faut alors très peu d'énergie pour propulser ce train à de grandes vitesses. Un prototype japonais a ainsi atteint des vitesses de plus de 500km/h.
Les supraconducteurs permettent de créer des champs magnétiques à la fois très intenses et contrôlés, et servent donc pour l'imagerie par résonance magnétique (IRM). Ceci offre bien sûr de nouvelles possibilités en imagerie médicale.
Les supraconducteurs peuvent être également utilisés pour créer de nouveaux outils pour les physiciens : dans le nouvel accélérateur de particules au CERN à Genève, les aimants sont des supraconducteurs.
35. L'année 1986 voit une véritable révolution dans le domaine de la supraconductivité. Bednorz et Muller découvrent en effet une nouvelle famille de matériaux supraconducteurs qui sont des oxydes de cuivre dopés. En l'absence de dopage, ces matériaux sont des isolants non-conventionnels, dans lesquels le niveau de Fermi semble être dans une bande permise (isolants de Mott). La température critique de ces supraconducteurs est bien plus élevée que dans les supraconducteurs conventionnels : le record est aujourd'hui de 138 degrés Kelvin pour un composé à base de mercure. C'est une très grande surprise scientifique que la découverte de ces nouveaux matériaux, il y a près de vingt ans.
Des matériaux aux propriétés étonnantes :
36. Ces sont donc des isolants d'un nouveau type, dits de Mott. Ces matériaux sont isolants non pas parce que leur couche extérieure est pleine mais parce que les électrons voulant sauter d'un atome à l'autre par effet tunnel se repoussent mutuellement.
37. La compréhension de la physique de ces matériaux étonnants est un grand enjeu pour les physiciens depuis une vingtaine d'années. En particulier, leur état métallique demeure très mystérieux et ne fait à ce jour pas le consensus de la communauté scientifique.
38. Il est également possible de fabriquer des métaux à partir de molécules organiques, nous obtenons alors des « plastiques métalliques » pouvant également devenir supraconducteurs en dessous d'une certaine température (découverte par Denis Jérome et son équipe à Orsay en 1981). Le diagramme de phase des supraconducteurs organiques est au moins voire plus compliqué que celui des oxydes métalliques.
39. Actuellement, des recherches sont menées sur des alliages ternaire, et quaternaires qui semblent offrir encore de nouvelles propriétés. Par exemple, les oxydes de manganèse ont une magnétorésistance colossale, c'est-à-dire que leur résistance varie beaucoup en présence d'un champ magnétique. Cette particularité pourrait être utilisée dans le domaine de l'électronique de Spin, où on utilise le Spin des électrons, en plus de leur charge pour contrôler les courants électriques. Les oxydes de Cobalt, quant à eux, présentent la propriété intéressante d'être des thermoélectriques (i.e capables de produire un courant électrique sous l'action d'un gradient de température).
Il existe donc de très nombreux défis dans ce domaine, ils sont de plusieurs types. D'abord, l'élaboration de structures peut permettre de découvrir de nouveaux matériaux aux nouvelles propriétés qui soulèvent l'espoir de nouvelles applications.
Mais il existe aussi des défis théoriques : est il possible de prédire les propriétés d'un matériau à partir des lois fondamentales ? Des progrès importants ont été réalisés durant la seconde partie du XXème siècle et ont valu à Walter Kohn le prix Nobel de chimie. Cependant, ces méthodes ne sont pas suffisantes pour prédire la physique de tous les matériaux, en particulier de ceux présentant de fortes corrélations entre électrons. Les puissances conjuguées de la physique fondamentale et calculatoire des ordinateurs doivent être mise à service de ce défi. Par ailleurs, de nouveaux phénomènes apparaissent dans ces matériaux qui amèneront certainement des progrès en physique fondamentale.
La chimie, la physique et l'ingénierie des matériaux et de leurs propriétés électroniques semblent donc avoir de beaux jours devant eux !

 

  VIDEO       CANAL  U         LIEN

 
 
 
 

Les étranges comportements thermiques du nanomonde

 

 

 

 

 

 

 

Les étranges comportements thermiques du nanomonde

30.11.2023, par Samuel Belaud, Délégation Rhône Auvergne
Mis à jour le 30.11.2023


Les recherches de Konstantinos Termentzidis et de son équipe dévoilent un monde fascinant où les lois de la thermique classique ne sont plus maîtresses. En levant le voile sur les échanges de chaleur entre un solide et un liquide à l'échelle nanométrique, les physiciens ouvrent la voie à des applications innovantes dans divers domaines industriels et technologiques.
Figurez-vous que l’effet Leidenfrost vous est familier ! Il se produit lorsque l’on verse de l’eau sur une surface très chaude, comme une poêle ou une plaque de cuisson. L’eau se met alors à danser et à former des gouttes rebondissantes, sans s’évaporer immédiatement.
Ce type d’interaction entre un liquide et un solide à l’échelle macroscopique est généralement bien caractérisé et décrit par les principes fondamentaux de la thermique. Parmi ceux-ci, la loi de Fourier, qui porte le nom du scientifique qui l’a formulée en 1822, permet de calculer la conduction thermique, c’est-à-dire la façon dont la chaleur se propage quand il y a une différence de température entre deux parties d’un même milieu ou entre deux milieux en contact. Cependant, à l’instar d’autres lois comme celle de Stefan-Boltzmann pour le rayonnement thermique, les développements fulgurants des nanotechnologies tendent à remettre en question leur applicabilité à de très petites échelles spatiales et temporelles.


Le chaos nano-thermique
 
Konstantinos Termentzidis, directeur de recherche au Centre d'énergétique et de thermique de Lyon1 (CETHIL), et son équipe ont récemment publié plusieurs articles permettant de percer les mystères du transport thermique à l’échelle nanométrique au sein de matériaux solides et de systèmes solides/liquides hybrides. Ils démontrent notamment qu’à cette échelle, la conductivité thermique prévue par la loi de Fourier n'est plus une propriété intrinsèque des matériaux, et que des comportements inattendus de dissipation de la chaleur apparaissent.
Le projet2 est né à la suite d’une curieuse idée soufflée par un collègue du physicien : créer un détecteur de pureté de vodka ! « Il était exaspéré par la faible qualité des breuvages qu’il trouvait, se rappelle le chercheur. Il a alors imaginé créer un dispositif nanoporeux léger, rapide et facile d’utilisation, pour mesurer le taux d’alcool et identifier les meilleurs liqueurs par rapport leurs signatures thermique unique ». Si l’idée n’a pas vu le jour, elle a été le point de départ d’une réflexion plus profonde sur les interactions entre un liquide (où la vodka devient de l’eau) et un solide d’échelle nanométrique.
À cette dimension - cent mille fois inférieure à l‘épaisseur d’un cheveu - les assemblages d’atomes ou de molécules présentent des propriétés physico-chimiques inhabituelles. Par exemple, le transfert d’énergie thermique au sein de nanomatériaux (ex. nanofils, nanotubes, super-réseaux, nanocomposites, matériaux nanoporeux, etc.) est très différent de celui observé aux échelles micro et macroscopique. « Nos recherches consistent à observer et simuler ces comportements qui échappent aux lois de la thermique classique, explique Konstantinos Termentzidis, pour ensuite les caractériser, les maîtriser et enfin améliorer la gestion de la chaleur dans les nanotechnologies ou les matériaux nanoporeux ».
Et de poursuivre : « nous avons par exemple observé un phénomène très particulier, relatif à la stratification des molécules d’eau à proximité de surfaces solides ». Dans le détail, les chercheurs ont constaté que la densité des molécules d’eau, ainsi que la quantité de liaisons d’hydrogène qui les relient3, variaient en s’éloignant de quelques nanomètres de la surface du solide. « Ce type de comportement pourrait expliquer les écarts de conductivité constatés à l’échelle nanométrique » avance le physicien.
 
Éviter le coup de chaud
 
Une fois ces phénomènes déroutants caractérisés, les chercheurs ont pu mener des expériences de fonctionnalisation de surface. Ce procédé consiste à modifier les propriétés de la surface d’un nanomatériau, afin d’optimiser ses performances ou de lui conférer de nouvelles fonctions, par exemple en termes d’adhérence, de réactivité, de biocompatibilité. « Dans notre cas, illustre Konstantinos Termentzidis, cela nous permet de jouer sur l’hydrophobicité et l’hydrophilie4 de surfaces, pour mieux contrôler les interactions thermiques entre liquides et solides à l’échelle nanométrique et éviter par exemple les effets de surchauffe qui contraignent beaucoup les nanotechnologies actuellement ».

Simulations d’interactions entre le solide nanoporeux (silicium - en jaune) et les molécules d’eau (en bleu et rouge). Les figures du haut sont en 2D, celles d’en bas en 3D. La dernière figure (d) simule le comportement habituel (amorphe) de l’eau dans ces conditions © Konstantinos Termentzidis
Cette technique offre un potentiel considérable pour optimiser les matériaux nanoporeux, qui sont ensuite utilisés dans une large gamme d'applications, allant des catalyseurs dans l'industrie pétrochimique et chimique, à la captation de CO2, en passant par le stockage d'énergie et la nanotechnologie médicale. La fonctionnalisation de surface est également essentielle au développement des dispositifs NEMS (systèmes micro électromécaniques nanométriques) et MEMS (systèmes micro électromécaniques).
Plus largement, les recherches que mènent ces scientifiques permettent de développer des modèles et des outils mieux adaptés à la gestion du transfert de chaleur dans les nanomatériaux et les systèmes complexes. C’est le cas notamment pour la microscopie thermique à balayage (ou scanning thermal microscopy, en anglais), dont la sonde qui permet de mesurer la conductivité thermique pourra être nettement améliorée. Avec cet outil ainsi optimisé, les chercheurs envisagent des progrès significatifs dans la compréhension du transport de l’énergie à l’échelle de l’infiniment petit.

Vers une nouvelle loi de la thermique ?
 
Il reste aux scientifiques certaines problématiques à résoudre avant de voir leurs travaux se concrétiser à l’échelle industrielle. Konstantinos Termentzidis explique par exemple que le phénomène d'augmentation inattendue de la conductivité thermique de l’eau au sein de systèmes nanoporeux qu’ils ont observés, est maximisé autour d’une température de 300 Kelvins (la température à laquelle les expériences sont menées). Cependant, les effets diminuent à des températures plus basses ou plus élevées. Comprendre comment et pourquoi ces comportements varient en fonction de la température est indispensable pour imaginer traduire ces recherches dans les nano-objets de demain.
D’ici-là, leur démonstration de l’inapplicabilité de la loi de Fourier à l'échelle nanométrique permet déjà à la recherche en physique d’avancer à grands pas. La construction d’une nouvelle loi est par conséquent attendue pour objectiver ces phénomènes dans une équation, qui soit admise et partagée par les chercheurs. Le physicien l’admet, « l’élaboration d’une nouvelle loi physique qui inclurait tous ces phénomènes exotiques observés à de petites échelles ne se décrète pas si aisément ». Il faut du temps, de la collaboration et surtout beaucoup de moyens pour y parvenir.
De ce point de vue,« la nano-thermique est très développée, notamment en France, aux Etats-Unis, au Japon et en Chine » rassure le chercheur. Les nouvelles connaissances5 que les scientifiques ont déjà produites et la force du réseau international de physiciens, chimistes et ingénieurs des matériaux spécialisés ouvrent la voie à de prochains bouleversements théoriques et technologiques.
---------------------------
Ces recherches ont été financées en tout ou partie, par l’Agence Nationale de la Recherche (ANR) au titre du projet ANR-Hotline-AAPG2018. Cette communication est réalisée et financée dans le cadre de l’appel à projet Sciences Avec et Pour la Société - Culture Scientifique Technique et Industrielle pour les projets JCJC et PPRC des appels à projets génériques 2018-2019 (SAPS-CSTI-JCJ et PRC AAPG 18/19).
 
Notes
*         1.
Unité CNRS, INSA Lyon, Université Claude-Bernard Lyon 1
*         2.
Le projet ANR HOTLINE, a été porté en collaboration avec des membres du Laboratoire énergie et mécanique théorique et appliquée - LEMTA (unité CNRS, université Lorraine) et l'Institut des nanotechnologies de Lyon (unité CNRS, CPE Lyon, Ecole Centrale de Lyon, INSA de Lyon et Université Claude Bernard Lyon 1)
*         3.
Liaison faible entre un atome d'hydrogène d’une molécule d’eau A avec un atome d'oxygène d’une molécule d’eau B
*         4.
Propriété d’une substance ayant une répulsion (hydrophobicité) ou une affinité (hydrophilie) pour l’eau
*         5.
Plusieurs autres phénomènes éloignés des lois classiques ont été observés ces dernières décennies : régime balistique et hydrodynamique de la chaleur, “seconde sound”, effets de tunneling, rectification thermique, effet d'interférence thermique, etc.

 


            DOCUMENT         CNRS         LIEN  

 

 
 
 
 

Pour un développement citoyen

 

 

 

 

 

 

 

Pour un développement citoyen

Les usages et les impacts des nanotechnologies font l’objet de nombreuses études portant sur la maîtrise des risques potentiels.

Publié le 1 juillet 2012

LES NANOTECHNOLOGIES : DES APPLICATIONS DANS TOUS LES DOMAINES
Les nanotechnologies devraient permettre de créer des objets rendant plus de services en utilisant moins de matière première et d’énergie. Elles pourraient ainsi amoindrir l’impact environnemental de certaines industries (comme celles liées à l’énergie) ou activités (comme les transports ou les technologies de l’information).
Parallèlement à leur apport dans le domaine des nouvelles technologies de l’énergie, elles contribueront à diminuer la consommation d’énergie en améliorant le rendement énergétique d’objets courants. Ainsi, citons des matériaux plus légers et résistants utilisés pour les véhicules, le remplacement des lampes à incandescence par des diodes électroluminescentes (beaucoup moins gourmandes en électricité), le remplacement des écrans cathodiques par des systèmes à cristaux liquides (dix fois moins consommateurs)… Enfin, un des enjeux, et non des moindres, est de développer des composants nanoélectroniques faible consommation pour des systèmes de calcul efficaces énergétiquement ; 13 % de l’électricité mondiale est aujourd’hui consacrée à ce secteur !
Les nanotechnologies peuvent contribuer à la détection des pollutions : des nano-capteurs fiables, rapides et peu onéreux permettront de traquer toutes sortes de molécules organiques ou minérales indésirables dans l'eau, l'air ou le sol. Une fois détectées, il faut remédier à ces pollutions ; qu'il s'agisse du traitement des eaux ou de la conception de nouveaux catalyseurs pour emprisonner les nanoparticules des fumées des moteurs d'automobiles, des réacteurs d'avions, des cheminées d'usines…

Un panel international de spécialistes a listé les dix applications des nanotechnologies jugées comme les plus intéressantes pour les pays en voie de développement : énergie (nouvelles cellules solaires et piles à combustible), agriculture (nanofertilisants), traitement de l'eau (filtration, décontamination, désalinisation), diagnostic médical, délivrance de médicaments, emballage et stockage des aliments, remédiation de la pollution atmosphérique, matériaux de construction, suivi de paramètres biologiques (glycémie, cholestérol), détection des insectes nuisibles et des vecteurs de maladies. Certaines d'entre elles ne sont pas trop compliquées, chères ou demandeuses d'infrastructures et peuvent être développées sur place. L'Inde, le Brésil ou la Chine y consacrent des investissements importants, et de nombreux autres pays, qui possèdent déjà une infrastructure universitaire et industrielle, comme l'Afrique du Sud, la Thaïlande ou l'Argentine font également de la recherche en nanotechnologies.

Des recherches en toxicologie évaluent les dangers réels ou supposés des nanotechnologies.

RISQUES POTENTIELS
La notion de risque lié aux nanotechnologies comporte deux aspects : le danger (issu de la toxicité) et l’exposition. Les recherches en toxicologie sont là pour évaluer les dangers réels ou supposés.
L'étude de la pollution urbaine recherche son impact sur la santé humaine, notamment les effets des particules ultrafines émises par les véhicules diesel. Sur le même schéma, d'autres études qui font état d'interactions entre nanoparticules et cellules incitent à la prudence en cas d’inhalation, de pénétration par voie cutanée ou digestive. Une démarche d’anticipation est donc mise en place.
Dans les ateliers de production et de mise en œuvre, si les nanoparticules sont constituées de matière toxique (métaux lourds par exemple), elles peuvent exposer les hommes aux mêmes risques que sous forme macroscopique. Un risque potentiel supplémentaire est lié aux propriétés spécifiques des nanoparticules : surface multipliée, réactivité chimique… Des recherches sont donc menées actuellement pour étudier le devenir des nanoparticules et nanofibres si elles étaient inhalées. Les bonnes pratiques de travail sont très similaires à celles recommandées pour tout produit chimique dangereux, mais elles revêtent une importance particulière en raison de la grande capacité de diffusion des nano-objets dans l'atmosphère. Dans le milieu industriel, il faut concevoir des procédés qui minimisent les étapes d’exposition potentielles, par exemple en réalisant la collecte des nano-objets en phase liquide afin de garantir leur non-diffusion en cas d’incident. Il faut aussi veiller à automatiser les étapes du procédé, capter les polluants à la source, filtrer l'air des locaux avant rejet dans l'atmosphère, et équiper individuellement chaque travailleur d'une protection respiratoire et cutanée.
Dans le cas du consommateur, il s’agit d’éviter qu’il soit mis en contact avec un produit potentiellement dangereux. Ainsi, tout est mis en œuvre pour que les produits grand public ne contiennent pas de nanoparticules libres et pour éviter qu’un produit n’en génère, par exemple lorsqu’il vieillit ou se dégrade.
Des questions se posent sur les effets potentiels des nanoparticules manufacturées dans l’environnement (comportement, mécanismes de dégradation) et l’impact de leur dispersion sur les écosystèmes (danger éventuel pour certaines espèces). Des recherches visant à étudier leur écotoxicité sont mises en place.
De nombreux états, comme les États-Unis et la France, se mobilisent pour évaluer et maîtriser les risques liés aux nanoparticules et leurs effets secondaires éventuels ; prenant en compte leurs caractéristiques, leurs possibles voies de contamination, les moyens de protection, les moyens de production, le comportement des nanoparticules dans l’environnement…

En Europe, le CEA s’est associé en 2005 avec des partenaires R&D de l’industrie chimique et technologique pour constituer un « projet intégré » baptisé Nanosafe 2. Ce projet se décompose en quatre axes de développement :
*         technologies de détection et de caractérisation des nanoparticules dès l’étape de production ;
*        
*         réseau international pour constituer une base de données sur les effets des nanoparticules sur l’organisme et l’environnement ;
*        
*         filières industrielles entièrement intégrées, dont l’objectif est de produire sans mettre en contact le précurseur de la nanoparticule (aérosol, gaz, liquide) et le composant final ;
*        
*         études d’analyses du cycle de vie et de filières de recyclage, afin de maîtriser les effets sur la santé et l’environnement, en association avec la Commission européenne de normalisation.
Des structures d'études
pour les nanos au CEA
*         OMNT : Observatoire des micro et nanotechnologies
La mission de cet observatoire, lancé en 2005 à l’initiative du CEA et du CNRS, consiste à réaliser en continu une veille scientifique et technologique dans le domaine des micro- et nanotechnologies. Il s’appuie pour ce faire sur un réseau de plus de 230 experts français et européens. Ainsi, il peut informer les organismes et ministères concernés et fournir aux industriels une information pertinente et actualisée.

*         LARSIM : Laboratoire des recherches sur les sciences de la matière
Le LARSIM a vu le jour au sein du CEA en 2007. Premier laboratoire du CEA dédié à la philosophie des sciences, le LARSIM a pour but d’étudier et de mieux faire comprendre les enjeux de la recherche scientifique contemporaine. Parallèlement à son travail sur la place de la science dans la société, le LARSIM mène un programme de recherche en fondements de la physique.

Pour la première fois, les répercussions sanitaires, environnementales et sociales sont considérées et étudiées parallèlement au développement des technologies et à la mise en place de méthodes sûres de production des nanoparticules. Cette simultanéité devrait permettre l’anticipation et la maîtrise des risques potentiels associés et faire évoluer des réglementations spécifiques en fonction des progrès des connaissances et des recherches en cours.

QUESTIONS ÉTHIQUES POSÉES PAR LES NANOSCIENCES ET LES NANOTECHNOLOGIES
Par rapport à la problématique des nanotechnologies, la réflexion éthique dépasse les limites de la pure déontologie, définie comme un ensemble de comportements et de règles professionnelles. L’éthique analyse les changements que la recherche scientifique introduit dans le monde, les responsabilités des chercheurs vis-à-vis de la société et les réactions que suscitent en son sein les nouveautés techniques. L’excellence scientifique et l’innovation doivent être accompagnées des mesures de précaution correspondant aux incertitudes sur les nouveaux produits issus des nanotechnologies. S’ils souhaitent assurer l’acceptabilité des fruits de leurs recherches, les chercheurs sont tenus à prendre en considération les intérêts des différents acteurs. De multiples rapports tentent ainsi d’évaluer les impacts potentiels des nanotechnologies sur la société, par exemple, le rapport britannique « Nano­sciences et nanotechnologies : opportunités et incertitudes » réalisé en 2004.
Il recommande d’appliquer le principe de précaution, tout comme le rapport du Comité de la prévention et de la précaution français en 2006, suivi par celui de l’Agence française de sécurité sanitaire et de l’environnement au travail. L’Office parlementaire d’évaluation des choix scientifiques et technologiques a organisé plusieurs concertations sur les nanotechnologies et établi un rapport « Nanosciences et progrès médical », incitant à mener les recherches sur les nano­sciences et nanotechnologies en parallèle avec celles sur les risques et impacts éventuels.
Depuis 2005, la Commission européenne a lancé un Plan stratégique européen afin de mener une réflexion approfondie sur les risques, les usages et les impacts des nanotechnologies. Mi-2007, elle a proposé l’adoption d’un code de conduite sur le même sujet, qui a été publié en février 2008. La Commission a également mis en place en mars 2008 le nouvel Observatoire européen des nanotechnologies.Pour la France, cet observatoire s’appuiera sur l’OMNT et le LARSIM.

 

  DOCUMENT     cea         LIEN

 
 
 
 

Les propriétés des lasers

 

 

 

 

 

 

 

Les propriétés des lasers


Pour remplir leur mission, les lasers changent de couleur, de puissance, émettent en continu ou par impulsions…


Publié le 30 juin 2015


LA COULEUR D'UN LASER
Elle est définie par le choix du milieu laser. Il existe des lasers de toutes les couleurs : rouge, bleu, vert… Certains d’entre eux sont même constitués de lumière invisible comme les ondes infrarouges ou ultraviolettes. Ces multiples couleurs font la beauté de nombreux spectacles son et lumière. La plupart des lasers ne peuvent émettre que sur une seule longueur d’onde. L’utilisation de cristaux possédant des propriétés optiques non linéaires permet de convertir la longueur d’onde d’un laser pour obtenir des faisceaux de longueur d’onde doublée ou triplée. Il existe de plus des lasers dont on peut faire varier continument la longueur d’onde sur une certaine plage. On dit qu’ils sont accordables. Leur milieu laser a longtemps été un liquide contenant des molécules de colorant qui, une fois excitées, ont la particularité d’émettre sur un grand intervalle de longueurs d’onde. Maintenant, ils tendent à être remplacés par les oscillateurs paramétriques optiques (OPO) et les diodes laser accordables, présentant l’avantage d’éviter l’utilisation de solvants. Les diodes laser sont les sources les plus couramment utilisées actuellement. Leur rendement énergétique élevé et leur fabrication peu coûteuse ont permis leur industrialisation massive.

LA PUISSANCE D'UN LASER
La puissance se définit classiquement comme la quantité d’énergie émise par unité de temps. Un laser délivrant un joule pendant une seconde aura une puissance d’un watt. Dans le cas des lasers continus, l’étendue des puissances de sortie va classiquement de 1 mW pour des petites diodes laser, à 50 kW pour les lasers de soudage.
Dans le cas de lasers impulsionnels, il faut distinguer :
*         la puissance moyenne délivrée, qui tient compte des intervalles de temps entre chaque impulsion,
*         la puissance de crête, qui est la puissance atteinte lors d’une l’impulsion.

Ainsi, un laser d’un watt délivrant sa lumière de façon continue aura une  puissance d’un watt ; mais s’il concentre une énergie d’un joule en une décharge lumineuse d’une milliseconde, sa puissance de crête va être multipliée par mille et atteindra un kilowatt.
En délivrant leur énergie sur des temps très courts (nanoseconde voire picoseconde ou même femtoseconde), certains lasers d’étude peuvent atteindre des puissances de crête extrêmement élevées (jusqu’à 10 petawatts).
Plus modeste, un laser industriel dédié au soudage, de puissance moyenne de 1 kW, dispose d’une puissance de crête de 25 kW.

L’INTENSITÉ D'UN LASER
L’intensité, c’est la puissance par unité de surface, qui s’exprime en nombre de watts par centimètre carré (W/cm2). Par exemple, l’intensité du Soleil peut atteindre 0,1 W/cm2. En focalisant cette lumière avec une loupe, celle-ci est portée à 100 W/cm2, ce qui suffit pour enflammer une feuille de papier. Le diamètre des faisceaux de lumière émis par les lasers (plusieurs dizaines de mm pour les lasers industriels) est souvent trop grand et leur intensité trop faible pour une utilisation directe efficace. Il faut focaliser les faisceaux pour augmenter leur intensité. Dans certains lasers, la focalisation est obtenue par des systèmes optiques à lentilles. D’autres utilisent des dispositifs à miroirs, plus rarement des montages à réseau de diffraction focalisant.
Un laser de 20 W focalisé sur quelques micromètres produit une intensité de l’ordre du milliard de W/cm2. Avec un laser impulsionnel de quelques mJ, on atteint très facilement les centaines de milliards de W/cm2. La focalisation est alors obtenue par des systèmes optiques plus ou moins complexes, constitués de lentilles et de miroirs, qui sont adaptés aux longueurs d’onde et aux fortes énergies utilisées. La focalisation est, par exemple, indispensable pour les opérations industrielles de perçage, soudage et découpage. Elle est aussi utile pour les lasers de puissance utilisés par les chercheurs pour étudier l’interaction lumière-matière.

LA COHÉRENCE D'UN LASER
La cohérence du laser regroupe les propriétés d’uni-directionnalité et de monophasage. C’est elle qui permet à la lumière laser de pouvoir être fortement concentrée, dans le temps et dans l’espace ; elle est souvent à la base des applications des lasers. Cette propriété va permettre le transfert et le transport d’informations comme pour la lecture des disques optiques ou les liaisons Internet, par faisceaux laser dans des fibres optiques. Les ondes lumineuses qui composent la lumière laser se propagent toutes dans la même direction, de manière parfaitement rectiligne.
Un faisceau laser est très peu divergent, ce qui le rend visible sur de grandes distances. Cette propriété est utilisée pour l’alignement des tracés de routes et de tunnels comme, par exemple, lors de la construction du tunnel sous la Manche ou de la tour Montparnasse. Les lasers servent aussi dans la télémétrie, c’est-à-dire la mesure de distances. Le faisceau laser atteint une cible, qui en renvoie une partie en sens inverse. La vitesse de la lumière étant connue, il est possible, en mesurant le temps mis par le faisceau laser pour faire l’aller-retour, de connaître la distance séparant la source laser d’un obstacle. Cette méthode a permis le calcul précis de la distance Terre-Lune. La diffusion par les poussières et les aérosols de l’atmosphère rend visible ce rayon lumineux jusque loin dans l’espace et en fait l’outil des spectacles laser.

 

 DOCUMENT     cea         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon