ecole de musique piano
     
menu
 
 
 
 
 
 

LES MATÉRIAUX MAGNÉTIQUES : DE LA BOUSSOLE À L'ÉLECTRONIQUE DE SPIN

 

 

 

 

 

 

 

Texte de la 230e conférence de l’Université de tous les savoirs donnée le 17 août 2000.  

                                                                                                                                Les matériaux magnétiques : de la boussole à l'électronique de spinpar Michel Piecuch Les matériaux magnétiques sont omniprésents dans notre environnement. Une voiture moderne, par exemple, peut contenir jusqu'à 70 dispositifs différents utilisant ces matériaux comme des moteurs électriques, des actionneurs ou transmetteurs de mouvement, des capteurs... Leur présence cachée au sein d'innombrables objets technologiques reste cependant mystérieuse comme le mot lui même. Nous essayerons, dans la suite, d'éclairer le fonctionnement de ces matériaux et les concepts scientifiques qui les sous tendent. Un peu d'histoire L'histoire des matériaux magnétiques remonte à une époque très ancienne, à peu près contemporaine à la découverte du fer. Les premières mentions de l'existence des aimants écrites par les Grecs, datent d'environ 800 avant Jésus-Christ*, le nom de « magnétés » est rapporté par plusieurs philosophes. L'origine de ce nom est controversée, ma version préférée est celle de William Gilbert, médecin de la reine Élisabeth I qui dit la tenir de Pline, le nom de magnétite viendrait du nom du berger Magnés : « Les clous de ses sandales et le bout ferré de son bâton pastoral se sont collés à une pierre magnétique quand il gardait son troupeau ». Parallèlement aux grecs, les chinois découvrirent également les aimants, mais ils remarquèrent, découverte décisive, la directivité des pierres d'aimants dans le champ magnétique terrestre. Un instrument directif constitué d'une cuillère posée sur un plateau est représenté dans une peinture datant d'environ 50 après Jésus-Christ. Une boussole chinoise classique est constituée d'un poisson en fine tôle de fer porté au rouge puis trempé dans l'eau froide et mis au dessus d'un bol d'eau; il indique le nord magnétique (vers l'an 1000). En Europe, le premier livre sérieux sur le sujet De Magnete fut publié par Pierre Pèlerin de Maricourt en 1269. Il fut celui qui parla le premier de pôle magnétique. La science moderne du magnétisme est plus tardive et date des découvertes de Charles Augustin Coulomb. En utilisant une balance de torsion, il établit la loi de variation de la force magnétique en fonction de la distance (1785). Une expérience très importante fut faite en avril 1820 par le physicien danois Hans Christian Oersted. Il montra qu'un fil parcouru par un courant électrique produit un champ magnétique : « une boussole placée à proximité de ce fil est déviée quand le fil est parcouru par un courant électrique ». Cette découverte est à l'origine de tous les moteurs électriques : l'interaction d'un matériau magnétique avec un courant électrique produit du mouvement. Michael Faraday découvrit, l'année suivante (1821), le phénomène d'induction : un champ magnétique variable placé à proximité d'une spire crée un courant électrique dans cette spire. C'est la découverte du processus qui produit de l'électricité dans les dynamos et les alternateurs. Avec les découvertes d'Oersted et de Faraday s'ouvrait l'ère de la deuxième révolution industrielle, on avait les moyens de produire de l'électricité et on savait l'utiliser pour faire des moteurs. La physique du magnétisme CONCEPTS DE BASE Les deux concepts centraux dans la physique du magnétisme sont les concepts de champ et de moment magnétique. L'objet magnétique le plus simple est un aimant permanent. Cet aimant exerce une force sur un autre aimant ou sur des matériaux magnétiques comme le fer. Si on observe deux aimants en train d'interagir, ils s'attirent ou se repoussent, il y a une action à distance, c'est le champ magnétique produit par l'un des aimants qui interagit avec l'autre aimant. Si l'un des deux aimants est libre, il tourne si il est dans le « mauvais sens », on dit que l'aimant a deux pôles. Deux pôles identiques se repoussent, deux pôles différents s'attirent. Pour préciser cette notion de pôles, on définit le moment magnétique, qui est un vecteur allant du pôle sud au pôle nord. Un aimant possède donc un moment magnétique et ce moment produit un champ magnétique. Le plus simple des circuits électriques est une boucle de courant. Elle est équivalente à un aimant permanent (fig. 1). Le moment magnétique de la boucle est un vecteur perpendiculaire au plan de la boucle et dont l'intensité est donnée par le produit de l'intensité du courant électrique passant dans la boucle par sa surface. Le champ magnétique produit par la boucle est alors donné par les mêmes formules que le champ électrique produit par un dipôle électrique (deux charges de signe contraire). Figure 1 Une boucle de courant (un circuit) et un aimant sont des sources de champ magnétique équivalentes, on les représente par un vecteur, le moment magnétique. La force exercée par un champ magnétique sur un moment magnétique (par un aimant sur un autre aimant par exemple), repose sur un principe très simple : elle est fondée sur la recherche de l'énergie minimum. L'énergie d'interaction entre un champ magnétique et un moment magnétique est donnée par le produit scalaire des deux vecteurs : Où q est l'angle entre les deux vecteurs. Le moment magnétique d'un aimant va donc vouloir s'aligner avec le champ magnétique (pour rendre l'angle plus petit ou le cosinus plus grand), il va tourner, et ensuite l'aimant va aller vers le champ maximum, comme le champ croit quand on s'approche d'un aimant, c'est ce qui explique l'attraction de deux aimants. L'ORIGINE MICROSCOPIQUE La mécanique quantique décrit le mouvement des électrons dans les atomes. Classiquement, on peut imaginer, un électron en train de décrire une orbite autour du noyau de l'atome. Cette charge électrique en train de tourner est équivalente à une boucle de courant et produit donc un champ magnétique, le moment magnétique correspondant est appelé moment magnétique orbital. L'électron a un autre moment magnétique, que l'on peut imaginer comme correspondant au mouvement de rotation propre de l'électron (l'électron comme la terre tourne autour du noyau (le soleil) et sur lui même), mais qui, en fait, ne peut être compris qu'avec la mécanique quantique. Ce moment magnétique est proportionnel à un vecteur décrivant cet état de rotation propre que l'on appelle « le spin ». Une telle description tend à faire croire que tous les atomes portent un moment magnétique (somme des moments orbitaux et de spin de tous les électrons présents dans l'atome). Cependant, le principe de remplissage des différents états électroniques de l'atome, le principe d'exclusion de Pauli (les électrons sont d'incorrigibles individualistes et on ne peut avoir deux électrons dans le même état) et la construction par couches successives font que les moments magnétiques se compensent. Dans une couche complète, par exemple, deux électrons ne peuvent avoir le même état orbital que si leurs spins sont différents c'est à dire opposés (un des électrons tourne dans un sens, l'autre dans l'autre). Malgré tout, pour des couches atomiques incomplètes, il reste un moment magnétique atomique et donc presque tous les atomes portent un moment, l'unité de moment magnétique des atomes est le magnéton de Bohr qui correspond au moment de spin d'un électron indépendant. Quand on construit des molécules, les mécanismes qui régissent les liaisons chimiques sont fondés sur la construction de couches complètes (deux atomes, dont l'un a N électrons de valence (les électrons de sa couche incomplète) et l'autre M, forment une liaison chimique si M+N=8, c'est à dire si le nombre total d'électrons de valence correspond à une couche complète) et donc les molécules ne portent pas de moments magnétiques (dans une couche complète il y a autant d'électrons de spin dans un sens que dans l'autre et autant d'électrons tournent autour du noyau dans un sens que dans l'autre). Ces composés acquièrent cependant un moment sous l'action d'un champ magnétique, ce moment tend à créer une réaction au champ appliqué : il lui est opposé, ces matériaux dit diamagnétiques sont donc repoussés par un champ. Quand les atomes possèdent des couches qui n'interviennent pas ou peu dans la liaison chimique, comme les électrons dit « d » des métaux de transition dont la première série va du scandium au cuivre en passant par le fer, le cobalt et le nickel, ou comme les électrons « f » des terres rares (série qui va du lanthane au lutécium en passant par le gadolinium), les atomes conservent un moment magnétique dans l'état solide. L'état le plus simple de ces solides est l'état paramagnétique où les moments magnétiques des différents atomes sont désordonnés, un paramagnétique a un moment global qui est donc la somme vectorielle de moments désordonnés, ce moment global est nul sous champ nul. Quand on applique un champ, il lui est proportionnel et est dans le même sens que lui. LE COMPORTEMENT COLLECTIF DES MOMENTS MAGNÉTIQUES ATOMIQUES Les moments magnétiques d'atomes différents interagissent entre eux, de façon directe par ce qu'on appelle l'interaction dipolaire (le champ magnétique créé par un moment magnétique interagit avec un autre moment pour l'aligner dans le champ produit), mais aussi et surtout par des effets plus subtils que l'on appelle interaction d'échange, produisant une énergie d'interaction entre les moments magnétiques de deux atomes. Il existe deux types d'interactions : l'interaction ferromagnétique qui favorise la configuration où les deux moments magnétiques sont parallèles et l'interaction antiferromagnétique qui favorise l'état où les deux moments sont antiparallèles. Un matériau ferromagnétique est un matériau où toutes les interactions sont ferromagnétiques. Il a donc un moment permanent macroscopique qui est la somme de tous les moments magnétiques de ses atomes (qui sont tous parallèle). Un matériau antiferromagnétique a ses moments alternativement dans un sens puis dans l'autre, il se comporte globalement comme un paramagnétique puisque son moment global (la somme des moments magnétiques atomiques ou aimantation) est également nul en l'absence de champ appliqué. La théorie du ferromagnétisme fut faite par Pierre Weiss au début de ce siècle, la théorie de l'antiferromagnétisme par Louis Néel en 1932 ( Prix Nobel 1970). Cette description de l'ordre est valable au zéro absolu, si on augmente la température, deux mécanismes sont en compétition, la température, d'une part, tend à favoriser l'agitation thermique et donc le désordre des moments et l'énergie d'interaction, d'autre part, tend à aligner ces moments. Il y a donc, une température dite température de Curie (dans un ferromagnétique) au dessous de laquelle les spins de tous les atomes sont rangés (au dessus de la température de Curie le désordre l'emporte sur l'ordre et le solide devient paramagnétique). LES MATÉRIAUX FERROMAGNETIQUES La plupart des matériaux magnétiques utilisés dans des applications sont ferromagnétiques. Le comportement d'un ferromagnétique sous champ appliqué est décrit par ce qu'on appelle le cycle d'hystérésis (fig. 2). Si on part d'une situation où le corps ferromagnétique a un moment global nul et l'on applique un champ, le moment magnétique mesuré va croître assez rapidement jusqu'à une situation où tous les moments magnétiques atomiques sont alignés avec le champ extérieur, c'est la saturation qui correspond pour du fer métallique, par exemple, à 2,2 magnétons de Bohr par atomes. Ensuite, si on abaisse le champ pour l'annuler, la courbe n'est pas réversible, en champ nul il reste un moment magnétique global ou aimantation rémanente, et il faut appliquer un champ magnétique négatif (le champ coercitif) pour supprimer ce moment. Figure 2 Cycle d'hystérésis. Après saturation, la baisse du champ magnétique appliqué conduit à l'aimantation rémanente MR et il faut appliquer un champ magnétique négatif suffisant, le champ coercitif HC pour annuler à nouveau l'aimantation. Ce cycle d'hystérésis est essentiellement expliqué par la théorie des domaines. Quand Pierre Weiss proposa sa théorie des matériaux ferromagnétiques : l'alignement spontané des moments magnétiques atomiques, une objection lui vint naturellement, pourquoi existe t-il des états de ferromagnétiques où l'aimantation est nulle? Il trouva la réponse, un matériau ferromagnétique dans son état totalement ordonné crée un champ magnétique considérable à l'extérieur mais aussi à l'intérieur de lui même, ce champ dit champ démagnétisant est opposé à l'aimantation et donc son interaction avec les moments magnétiques coûte de l'énergie. Pour minimiser cet effet Pierre Weiss a proposé que, sous champ nul, une substance ferromagnétique soit constituée de nombreux domaines d'aimantations opposées, qui fassent que le champ démagnétisant soit diminué ou supprimé, c'est effectivement ce qu'on observe. On comprend alors la courbe d'hystérésis décrite plus haut : l'échantillon avait au départ une structure en domaines et une aimantation nulle. Le champ magnétique a déplacé les parois de domaines jusqu'à les supprimer pour atteindre la saturation. Quand on abaisse le champ, on peut créer des domaines, mais cela coûte de l'énergie (énergie de paroi) et il reste donc une aimantation rémanente. Les applications LES AIMANTS PERMANENTS OU MATÉRIAUX DURS On classe les matériaux ferromagnétiques suivant la valeur de leurs champs coercitifs, les matériaux dits durs sont les matériaux qui ont un grand champ coercitif, les matériaux doux sont les matériaux qui ont un champ coercitif faible (historiquement, les aciers mécaniquement doux avaient le champ coercitif le plus faible). Les matériaux magnétiques les plus spectaculaires sont les aimants permanents, un aimant permanent est un matériau ferromagnétique à fort champ coercitif, c'est un matériau dur. Il est aimanté à saturation, puis on annule le champ appliqué et comme il a un champ coercitif très élevé, il garde une aimantation forte, les aimants permanents modernes sont des alliages de métaux de terre rare et de fer ou de cobalt. L'utilisation la plus courante de ces aimants permanents est la construction des moteurs électriques. Mais ils sont aussi utilisés dans de multiples capteurs. LES MATÉRIAUX DOUX Les matériaux doux dont le prototype est l'acier au silicium sont utilisés dans les transformateurs. Un transformateur est une boucle d'aimant, un enroulement électrique fait N tours autour de la boucle et aimante le matériau, les variations de flux produites (si le courant est alternatif) sont transmise à travers l'aimant à un autre enroulement de n spires et produisent dans ces spires une force électromotrice, le rapport des tensions est donné par le rapport n/N du nombre de spires. Un électroaimant fonctionne sur le même principe mais avec un seul circuit excitateur et une coupure dans le matériau magnétique l'entrefer où l'on peut utiliser le champ magnétique produit. Les matériaux doux sont aussi utilisés dans les alternateurs et dans de nombreux dispositifs de l'électrotechnique. L'ENREGISTREMENT MAGNÉTIQUE Une autre application courante est l'enregistrement magnétique. Le principe de l'enregistrement magnétique est extrêmement simple, on utilise l'hystérésis des matériaux magnétiques pour stocker des informations, un signal d'entrée aimante le média (disque ou bande) et le média conserve ensuite un moment magnétique proportionnel au signal (dans le cas analogique) ou un moment dans un sens (le 1) ou dans l'autre (le 0) dans le cas digital. Ensuite, en lecture, la tête passe devant le média et détecte des changements de flux en présence ou en absence de moment magnétique. Les médias sont en général des matériaux ferromagnétiques, les bandes magnétiques sont constitués de petits grains de divers matériaux (oxydes de fer, de chrome, fer métal...) dispersés dans une matrice plastique. Les disques durs d'ordinateurs comportent une couche mince de matériau magnétique déposée par les techniques modernes et gravée en pistes. Les recherches actuelles Les recherches actuelles sur les matériaux magnétiques ont été stimulées par une découverte faite à Orsay en 1998. Il s'agit de la magnétorésistance géante. La résistance d'un métal magnétique ordinaire dépend du champ magnétique extérieur appliqué mais cet effet est très faible, aussi le monde du magnétisme fut très surpris par la découverte du groupe d'Albert Fert à Orsay en 1988. Ces chercheurs ont mesuré la résistance sous champ magnétique d'une multicouche fer/chrome (empilement de quelques dizaines de couches identiques de fer et de chrome d'épaisseurs de l'ordre du nanomètre (milliardième de mètre)) et ont trouvé une variation de résistance très importante (plusieurs dizaines de %) sous des champs appliqués relativement modestes. Albert Fert expliqua l'effet observé. Il était bien connu depuis les années 60 que les électrons des deux types de spin dans un métal ferromagnétique ont une résistivité différente, les électrons dont le spin est antiparallèle à l'aimantation conduisent mieux que ceux qui ont un spin parallèle à cette aimantation (ou l'inverse suivant les métaux). Dans les multicouches fer/chrome, deux couches de fer voisines subissent une interaction antiferromagnétique à travers le chrome, leurs moments magnétiques sont donc opposés en champ nul, un champ élevé détruit cet ordre antiferromagnétique en mettant tous les moments parallèles. En champ nul, un électron a donc un spin parallèle à l'aimantation dans une couche et antiparallèle dans la couche adjacente, la résistance est la moyenne de la résistance des deux spins. En champ élevé, un électron a, soit son spin toujours parallèle à l'aimantation et une grande résistance, soit toujours antiparallèle et donc une résistance très faible. C'est cet effet de court circuit pour une partie des électrons qui produit la magnétorésistance géante (un électron très bien portant vaut mieux que deux électrons a moitié malades). Cette découverte encouragea la recherche technologique sur de nouveaux capteurs de champs magnétiques, on utilisa les techniques de gravure et de dépôts qui avaient été développées dans le domaine des semi-conducteurs durant les années 80 pour construire des dispositifs gravés en couches très minces. Les applications de ces capteurs sont multiples (par exemple dans le freinage ABS des voitures) mais ils sont principalement utilisés dans les têtes de lecture des disques durs d'ordinateurs. Une tête magnétoresistive typique est séparée en deux parties, une tête d'écriture qui est une spire génératrice de champ et une tête de lecture qui est magnétoresistive. Depuis l'introduction des têtes magnétoresistives, la capacité des disques durs croit deux fois plus vite, on approche actuellement de 1gigabit/cm2 (un disque standard actuel a une capacité de 2 gigabits mais une surface beaucoup plus grande que 2 cm2). Les premières têtes magnétorésistances, tout en utilisant les techniques de gravure et de films minces, reposaient sur la magnétorésistance classique, la deuxième génération utilise l'effet découvert par Albert Fert. Enfin la troisième reposera sur un nouvel effet, la magnétorésistance tunnel. Au début des années 90 des chercheurs du MIT à Boston ont redécouvert l'effet tunnel polarisé en spin qui avait été mis en évidence dans les années 70 à Rennes par Jullière. Cet effet est depuis lors l'objet d'une compétition acharnée de part et d'autre de l'Atlantique pour préparer les capteurs de demain. La physique de base est extrêmement simple, on élabore un objet où deux couches ferromagnétiques sont séparées par une couche isolante très mince (quelques nanomètres), on trouve un moyen pour que les deux couches magnétiques aient la possibilité d'avoir leurs aimantations parallèles puis antiparallèles, enfin, on mesure le courant transmis à travers l'isolant dans les deux cas. Le courant peut varier énormément entre les deux configurations magnétiques. La possibilité de faire passer du courant à travers un isolant très mince est un effet purement quantique et est dû au caractère ondulatoire des électrons, les électrons passent à travers l'isolant qui devrait les arrêter comme la lumière passe à travers une couche très mince de métal alors qu'elle devrait être totalement réfléchie. L'intérêt par rapport aux couches à magnétorésistance géante est que la résistance du dispositif est relativement grande, ce qui permet de le rendre très petit. L'existence de deux types d'électrons dans un ferromagnétique (ceux de spin parallèle à l'aimantation et ceux de spin antiparallèle) ayant des comportements de transport différent a amené les physiciens du magnétisme à faire l'analogie avec les semi-conducteurs où deux types de charges, les électrons et les trous, produisent des propriétés qui sont à la base de l'électronique moderne. On proposa donc le transistor magnétique : un transistor magnétique typique est constitué de trois couches avec une électrode de commande, la grille, qui contrôle le passage du courant entre les deux autres. Plusieurs applications de ces transistors magnétiques sont envisagées comme les capteurs, les magnétomètres, l'enregistrement, l'électronique proprement dite (remplacement des transistors à semi-conducteurs) mais surtout les mémoires non volatiles. Actuellement, la mémoire centrale d'un ordinateur est une mémoire à semi-conducteur qui nécessite un rafraîchissement constant et surtout qui perd toutes ses informations quand on coupe le courant. Dans le dispositif à mémoire magnétique, l'élément de mémoire individuel est une tricouche comme celle décrite ci dessus et les deux états 0 et 1 sont les états d'aimantation antiparallèle et parallèle, les temps d'accès de ces mémoires sont du même ordre de grandeur que celles à semi-conducteurs mais elles ont l'avantage considérable d'être permanentes, elles ne sont pas effacées quand on coupe le courant. Ces mémoires sont appelées MRAM ( magnetic random access memory). Petite conclusion Les matériaux magnétiques ont constamment accompagné l'histoire du progrès technique depuis le début de l'age du fer. L'utilisation de la boussole a permis l'essor du commerce maritime qui est à l'origine de la première révolution industrielle. Les découvertes d'Oersted et de Faraday au siècle dernier ont permis le développement des moteurs électriques et des alternateurs et ont conduit à la deuxième révolution industrielle. De multiples dispositifs de mémoire magnétique sont utilisés et seront utilisés dans les ordinateurs et les machines d'enregistrement qui permettent la troisième révolution industrielle celle de l'information et de la communication. La recherche actuelle sur les matériaux magnétiques est toujours très féconde et développe de nouvelles voies comme l'électronique de spin qui sera peut être la technique dominante pour les machines intelligentes au début du siècle prochain.
* Des références historiques plus détaillées peuvent être trouvées dans "Magnétisme", volume 1 Fondements. Sous la direction d'Etienne du Trémolet de Lachaisserie Presses universitaire de Grenoble 1999.

 

 DOCUMENT       canal-u.tv     LIEN

 
 
 
 

NANOSTRUCTURES SEMI-CONDUCTRICES

 

LES NANOSTRUCTURES SEMI-CONDUCTRICES


Lorsqu'un matériau semi-conducteur est structuré à l'échelle du nanomètre ses propriétés électroniques et optiques sont gouvernées par la mécanique quantique. Le puits quantique, formé par une couche mince semi-conductrice d'épaisseur nanométrique, est très communément employé depuis 20 ans pour fabriquer des composants très performants (diodes laser, transistors à gaz d'électrons bidimensionnel). De nombreuses études sont aujourd'hui consacrées aux boîtes quantiques semi-conductrices, nanostructures capables de confiner les électrons à l'échelle du nanomètre dans toutes les directions de l'espace. Après avoir présenté et comparé les principales stratégies permettant de fabriquer ces nano-objets, l'exposé s'attachera à montrer combien leurs propriétés sont originales. Une boîte quantique isolée se comporte par exemple à bien des égards comme un macro-atome artificiel ; cette propriété très intéressante permet de reproduire dans un système solide des expériences d'optique quantique jusque là réalisées avec des systèmes atomiques. Pour conclure, les perspectives d'application très prometteuses des boîtes quantiques dans des domaines aussi variés que l'optoélectronique, les communications quantiques, la micro/nanoélectronique ou la biologie seront brièvement présentées.

 

Texte de la 586 e conférence de l'Université de tous les savoirs prononcée le 8 juillet 2005

Par Jean-Michel Gérard * « Les nanostructures semiconductrices »

Au cours des vingt dernières années, les chercheurs ont appris à structurer la matière à l'échelle du nanomètre, en particulier pour les besoins de la microélectronique. Rappelons qu'un nanomètre, c'est un milliardième de mètre, c'est-à-dire cinquante mille fois plus petit que le diamètre d'un cheveu. On parle donc ici d'une échelle extrêmement petite, de l'ordre de quelques distances inter-atomiques au sein des molécules ou des corps solides. A l'échelle du nanomètre, les propriétés physiques sont très différentes de celles qui sont observables dans notre monde macroscopique et sont gouvernées, pour l'essentiel, par la mécanique quantique. Nous allons montrer ici qu'il est particulièrement intéressant de fabriquer des objets de taille nanométrique à partir de matériaux semi-conducteurs. Ces « nanostructures semiconductrices » nous ouvrent des perspectives d'application originales et importantes, grâce à leurs propriétés très particulières.
Nous utilisons tous au quotidien des composants nanométriques, souvent sans le savoir. A titre d'exemple, lorsque nous écoutons notre lecteur de disque compact, nous mettons en Suvre un laser semiconducteur « à puits quantique » pour lire l'information stockée sur le disque. Le cSur de ce composant est constitué par un empilement de couches semiconductrices, qui comporte notamment une couche très fine, le puits quantique, dont l'épaisseur est de l'ordre de 10 nanomètres. Ce composant a été développé il y a une vingtaine d'années et a aujourd'hui de très nombreuses applications.
Les semi-conducteurs constituent une famille de matériaux particulièrement commodes pour fabriquer des nano-structures et exploiter leurs propriétés originales. Après avoir rappelé en termes simples ce qu'est un semi-conducteur, je décrirai les effets quantiques de base attendus pour des structures semi-conductrices de taille nanométrique. Je présenterai ensuite les techniques de fabrication à cette échelle avant d'illustrer par quelques exemples les propriétés et applications des nanostructures semiconductrices.

Qu'est ce qu'un semiconducteur ?

Pour comprendre les propriétés électriques ou optiques des matériaux, il faut de façon générale connaître les états possibles pour les électrons dans le système considéré. Rappelons que ces états sont par exemple très différents pour un électron libre dans l'espace et pour un électron appartenant à un atome. Si l'électron est libre, il peut avoir n'importe quelle vitesse et par conséquent n'importe quelle énergie. S'il appartient à un atome isolé, son énergie ne peut au contraire prendre que certaines valeurs bien définies. Ceci résulte du fait que l'électron, attiré par le noyau atomique, est piégé au voisinage de celui-ci. Plus généralement, la mécanique quantique nous apprend que toute particule dont la position est confinée dans les trois dimensions de l'espace possède un ensemble discret d'énergies permises.
Considérons à présent la situation dans laquelle l'électron n'est plus dans un espace libre mais dans un solide, par exemple un morceau de fer ou un morceau de silicium. Dans ce cas, l'énergie de cet électron ne peut prendre que des valeurs comprises dans certains intervalles (ou « bandes ») d'énergie permise (voir la figure 1). Ceux-ci sont séparés par des « bandes interdites », plages d'énergie pour lesquels le système ne possède aucun état quantique permettant à l'électron d'avoir cette énergie. La connaissance de cette structure de bandes d'un matériau donné permet de définir si celui-ci est un métal ou un isolant. On connaît en effet le nombre d'électrons de ce solide et, d'après une loi physique connue sous le nom de principe de Pauli, on sait qu'on ne peut mettre dans un état quantique donné qu'un seul électron. Dans une « expérience de pensée », plaçons donc les électrons du solide à l'intérieur de ces bandes d'états disponibles. Pour cela, on remplit successivement les différents états, en commençant par ceux de plus basse énergie, jusqu'à ce que tous les électrons soient placés. Dans le cas d'un métal, ce processus s'arrête au milieu d'une bande d'états (voir figure 1). Un tel système électronique va pouvoir répondre très facilement à une sollicitation par une force extérieure, par exemple un champ électrique. En effet, les électrons qui occupent la bande partiellement remplie vont pouvoir se redistribuer aisément au sein de cette bande, puisqu'elle comprend à la fois des états occupés et des états vides très proches en énergie les uns des autres. Un tel solide sera un bon conducteur du courant, et est dit métallique. Supposons au contraire qu'on soit dans une situation pour laquelle les électrons remplissent parfaitement un certain nombre de bandes d'états, toutes les autres étant vides. Dans ce cas, il est beaucoup plus difficile de changer la configuration électronique du système, car il faut apporter une énergie importante pour faire passer un électron d'une bande d'états pleine à une bande d'états vide. Un tel solide, qui ne peut pas répondre à une sollicitation par un champ électrique, est un isolant. Plus précisément, on parlera de matériau semi-conducteur ou de matériau isolant, selon qu'il est possible ou non de rendre ce matériau partiellement conducteur en le fonctionnalisant, en suivant une méthode simple que nous allons décrire.
Nous avons vu que dans un isolant, les bandes d'états sont soit parfaitement remplies par les électrons, soit entièrement vides. On va pouvoir dès lors fonctionnaliser ce matériau en introduisant volontairement des impuretés, ce qu'on appelle « doper » le matériau. Imaginez, par exemple, que dans un cristal de silicium, vous remplaciez des atomes de silicium par des atomes de phosphore qui apportent chacun un électron en plus. Pour placer ces électrons excédentaires, il nous faut commencer à remplir une nouvelle bande, qu'on appelle bande de conduction. Puisqu'ils occupent une bande partiellement occupée, ces électrons vont pouvoir conduire le courant, et la conductibilité du matériau peut être ajustée très simplement en dosant le nombre d'électrons qu'on introduit. De la même façon, si vous insérez des impuretés qui apportent un électron en moins, la dernière bande d'état occupée, appelée bande de valence, ne sera pas complètement pleine. Elle comportera certains « trous », qui permettent ici encore au matériau de devenir conducteur. Le contrôle du dopage des semiconducteurs a constitué une étape clef pour le développement des diodes, des transistors et plus généralement pour l'essor de la microélectronique et de l'optoélectronique.

Figure 1 : Représentation schématique des états électroniques et de leur remplissage par les électrons du solide dans le cas d'un métal, d'un semiconducteur pur, et d'un semiconducteur dopé par des impuretés « donneuses d'électron ».

En considérant la figure 1 b), nous allons voir qu'un semi-conducteur non dopé présente des propriétés très spécifiques vis-à-vis de la lumière. La lumière et la matière interagissent par échange de quanta d'énergie comme l'a montré Einstein en 1905. Ces quantas (les « photons ») peuvent être vus comme des petits grains de lumière, qui ont une énergie hn, où h la constante de Planck et n la fréquence de l'onde lumineuse. Si ce quantum d'énergie hn est plus petit que la largeur de la bande interdite qui sépare la bande de valence de la bande de conduction, le principe de conservation d'énergie nous empêche de promouvoir un électron de la bande de valence à la bande de conduction. Le semi-conducteur ne peut absorber un tel photon, et est donc transparent pour un rayonnement lumineux de fréquence n. Par contre, si l'énergie hn est plus grande que la largeur de la bande d'énergie interdite, il devient possible de faire passer un électron de la bande de valence à la bande de conduction en absorbant un photon.
De plus, un semi-conducteur, peut être mis en Suvre pour émettre de la lumière de fréquence relativement bien définie. Imaginons que nous ayons placé par un moyen idoine, un certain nombre d'électrons dans la bande de conduction et un certain nombre de trous dans la bande de valence. Chaque électron pourra alors redescendre de la bande de conduction à la bande de valence en émettant un photon, avec une énergie voisine de la largeur de la bande interdite. En jouant sur la nature ou la composition du matériau semiconducteur, on peut ainsi ajuster la fréquence du rayonnement émis. Les matériaux les plus employés pour cette fonction sont le nitrure de gallium GaN, le phosphure d'indium InP, ou encore l'arséniure de gallium GaAs, tandis que le silicium, matériau roi de l'électronique, n'est pas un bon émetteur de lumière.
Le principal composant optoélectronique en termes de marché (loin devant la diode laser) est la diode électroluminescente. Ce composant très répandu est largement utilisé pour la visualisation (voyants lumineux, feux de signalisation routière, écrans plats extérieurs...) et de plus en plus pour l'éclairage. Nous reviendrons plus loin sur quelques avancées récentes importantes dans ce domaine.
On peut comprendre relativement simplement comment les diodes électroluminescentes et les diodes lasers émettent de la lumière lorsqu'on leur injecte un courant électrique (figure 2). Juxtaposons côte à côte deux morceaux de semi-conducteur dopés, l'un riche en électrons (SC « de type n ») et l'autre pauvre en électrons (SC « de type p »). Des électrons pourront alors passer de la bande de conduction du matériau de type n vers des états vides de valence du matériau de type p, passage qui s'accompagne de l'émission de photons. Afin d'entretenir ce phénomène, il faut bien entendu apporter des électrons au matériau de type n et en extraire du matériau de type p. Ceci est simplement réalisé en appliquant une tension électrique entre ces deux matériaux via des contacts métalliques.

Figure 2 : Principe de fonctionnement d'une diode électroluminescente (M = métal, SC = semi-conducteur). A droite, diodes électroluminescentes réalisées à partir du semiconducteur GaN (nitrure de gallium).

Afin d'accroître la fonctionnalité des matériaux semi-conducteurs, on peut aussi associer des semi-conducteurs de nature différente, présentant des largeurs de bande interdite différentes, de façon à réaliser une « hétérostructure » semiconductrice. Insérons par exemple une couche d'un matériau à petite bande interdite, P, au sein d'un semiconducteur G de plus grande bande interdite. Plaçons un électron dans la bande de conduction du matériau G. Lorsqu'il se déplace au sein de celui-ci, l'électron « voit » un univers essentiellement uniforme (tous les endroits se ressemblent dans un cristal, les atomes étant parfaitement bien ordonnés). A contrario, lorsqu'il arrive à l'interface entre les matériaux P et G, cet électron peut abaisser son énergie en passant de G à P, car il existe des états de conduction dans le matériau P à plus basse énergie que dans le matériau G. En quelque sorte, l'électron se comporte ici un peu comme une bille qui rencontrerait une marche d'escalier. Il était sur la marche du haut, il saute et tombe sur la marche du bas. On peut bien entendu décliner cette idée de très nombreuses façons, afin de structurer le profil de potentiel vu par l'électron. On va construire pour lui un paysage avec des collines et des vallées, dont le profil et la hauteur peuvent être dessinés quasiment à volonté en jouant avec la nature des matériaux.

Les nanostructures semiconductrices

Invention capitale, les hétérostructures semiconductrices ont déjà valu plusieurs prix Nobel à leurs inventeurs. Derniers en date, Z. Alferov et H. Kroemer se sont vus récompenser en 2000 pour avoir « développé des hétérostructures semiconductrices employées dans les domaines de l'électronique ultrarapide et de l'optoélectronique », selon les termes du comité Nobel. Les hétérostructures « quantiques » sont quant à elles apparues à la fin des années 70. Le principe reste ici le même, à ceci près qu'on va à présent structurer la matière à l'échelle du nanomètre de façon à voir apparaître des effets quantiques. Parmi les exemples les plus célèbres, on peut citer le super-réseau, qui est une sorte de millefeuille, constitué d'un empilement périodique G/P/G/P...de couches semiconductrices de grande bande interdite (G) et de petite bande interdite (P) de quelques nanomètres d'épaisseur. Les super-réseaux possèdent des propriétés de conduction électrique très particulières, dont la découverte a valu le prix Nobel 1973 à L. Esaki. On peut aussi jouer à confiner les électrons dans des nanostructures. L'exemple le plus simple, déjà cité, est le puits quantique G/P/G constitué par une couche mince P, d'épaisseur nanométrique, placée au sein d'un matériau G de plus grande bande interdite. Un électron de conduction, placé dans le puits quantique, est confiné selon une direction de l'espace, mais reste libre de se mouvoir dans les deux autres dimensions. On peut également fabriquer des fils quantiques ou des boîtes quantiques, pour lesquels l'électron est confiné selon deux dimensions ou trois dimensions. Dans le cas des boîtes quantiques, l'électron est confiné dans toutes les directions ; cette situation est tout à fait analogue au cas de l'électron piégé au voisinage du noyau dans un atome. On s'attend donc à retrouver, dans le cas des boîtes quantiques, un système présentant (comme l'atome) des états électroniques discrets, bien séparés en énergie.

Figure 3 : Représentation schématique d'un puits quantique (PQ), de fils quantiques (FQs) et de boîtes quantiques (BQs). Vue en coupe de puits quantiques de GaN dans AlN, obtenue par microscopie électronique à haute résolution (Remerciements à J.L. Rouvière et B. Daudin, CEA).

On sait réaliser des puits quantiques de bonne qualité depuis le début des années 80. A titre d'exemple, la figure 3 montre une vue en coupe d'un puits quantique de GaN au sein d'une couche de nitrure d'aluminium AlN, obtenue par microscopie électronique. Sur cette image, chaque ligne correspond à un plan d'atomes. On voit qu'en fait la structure est très proche de la perfection : d'une part, on passe de la couche de GaN à la couche d'AlN via un changement de composition abrupt à l'échelle atomique ; d'autre part, les interfaces sont presque parfaitement plates, à la présence près de quelques marches atomiques. Comment obtient-on en pratique un tel contrôle ? La perfection de ces objets résulte de la mise en Suvre d'une technique de déposition de films en couches minces, qui s'appelle l'épitaxie par jets moléculaires. Cette technique consiste à prendre un substrat, c'est-à-dire un cristal semi-conducteur sans défaut, sur lequel on va déposer l'hétérostructure désirée. Pour déposer une couche de nature donnée, par exemple en GaAs, on expose la surface du substrat à des flux d'atomes, ici de gallium et d'arsenic, évaporés à partir de cellules chauffées contenant des charges extrêmement pures de ces éléments. On ajuste la composition du matériau qu'on dépose en contrôlant les flux de ces différentes familles d'atomes, et les épaisseurs des couches déposées en jouant sur le temps de déposition. L'épitaxie par jets moléculaires se déroule dans une enceinte dans laquelle on réalise un vide résiduel extrêmement poussé (10-13 atmosphères !) de façon à éviter toute contamination par des atomes indésirables.

Les puits quantiques constituent un exemple simple de système dont les propriétés électroniques sont gouvernées par la mécanique quantique. Ces effets quantiques résultent du confinement de l'électron dans la couche « puits ». On sait depuis L. De Broglie qu'à toute particule on peut associer une onde, et que cette onde représente en fait la probabilité de présence de la particule dans l'espace. Toute onde confinée présente des fréquences de résonance particulière. Considérons par exemple la corde d'un violon ; elle a une longueur bien définie, est fixée à ses deux extrémités, et possède des fréquences de résonance spécifiques : la « note » qui lui est associée, ainsi que ses harmoniques, dont la fréquence est un multiple de celle de la note fondamentale. Il en est de même pour l'électron dans le puits quantique, dont l'onde associée va devoir s'adapter à la taille du puits. De façon analogue à la corde vibrante, dont la longueur est égale à un multiple de la demi longueur d'onde, la longueur d'onde de De Broglie l de l'électron est reliée à l'épaisseur L du puits par la relation L= n. l /2 où n est un nombre entier. De même que la longueur d'onde, l'énergie de l'électron (associée à son mouvement dans une direction perpendiculaire au plan du puits) ne peut prendre qu'un ensemble de valeurs discrètes données par l'expression suivante : . [1] Cette relation nous montre que l'électron a toujours une énergie cinétique minimale, donnée par E1, dont la valeur croît rapidement (comme 1/L2) lorsqu'on réduit la taille L du puits quantique. De même, la séparation énergétique entre les niveaux discrets de l'électron Em- En croît, elle aussi, comme 1/L2. L'étude expérimentale des puits quantiques par spectroscopie optique, par exemple l'étude de leurs propriétés d'absorption de la lumière, a parfaitement confirmé l'ensemble de ces prédictions. Les propriétés des puits quantiques ont été discutées plus en détail par E. Rosencher dans le cadre de ce cycle de conférences de l'UTLS, ainsi que leurs applications très variées en optoélectronique.

Nous allons nous intéresser plus spécifiquement dans la suite de cet exposé aux propriétés et applications des boîtes quantiques, qui ont fait l'objet de très nombreuses études au cours des dix dernières années. Initialement, ces nanostructures ont été principalement développées dans le but d'améliorer les propriétés des diodes laser. Pourquoi fabriquer des boîtes quantiques, et que s'attend t-on à gagner par rapport au laser à puits quantique ?
Ouvrons le boîtier de votre lecteur CD, et regardons à quoi ressemble la diode laser qu'il utilise pour lire le disque. Si on réalise une vue en coupe de ce composant, de façon à obtenir une image analogue à la figure 3, on verra qu'il est constitué par un empilement de couches semi-conductrices. L'une d'elles, de quelques centaines de nanomètres d'épaisseur, sert à guider le faisceau laser à l'intérieur du composant ; en son sein, on trouvera une ou quelques couches plus fines, formant des puits quantiques, qui vont amplifier cette onde laser s'ils sont excités par un courant électrique. Bien que les diodes laser soient des composants présentant des performances tout à fait remarquables, celles-ci sont cependant limitées par certaines lois fondamentales de la physique. Lorsqu'on met des électrons et des trous dans un puits quantique à la température T, l'énergie de ceux-ci n'est pas bien définie, mais distribuée sur une bande d'énergie de largeur typique kT, où k est la constante de Boltzmann. Le laser, quant à lui, fonctionne avec une fréquence d'émission n bien précise. On voit donc que la plupart des paires électron-trou injectées dans le puits, dont l'énergie est différente de hn, ne participent pas à l'émission laser. Ces paires peuvent cependant se recombiner, en émettant un photon par émission spontanée à une énergie différente de hn. Cette consommation d'électrons et de trous, inutiles pour le fonctionnement du laser, accroît la valeur du courant de seuil du laser, courant minimal qu'il faut lui injecter pour assurer son fonctionnement.
En 1982, Y. Arakawa et Y. Sakaki, de l'Université de Tokyo, ont proposé de réaliser des lasers à boîtes quantiques. L'idée sous-jacente était simple, conceptuellement du moins. Dans une boîte quantique, l'électron est confiné dans toutes les directions de l'espace, et ses états électroniques possibles sont discrets, comme pour un atome isolé. Si la boîte est assez petite, les états vont être très bien séparés en énergie comme on l'a vu auparavant, en discutant des effets de confinement. Supposons donc que cette séparation soit plus grande que l'énergie thermique kT (qui vaut 25 meV à température ambiante). Lorsqu'on injecte un électron dans la boîte quantique, celui-ci ne pourra occuper qu'un seul état, celui de plus basse énergie, car l'énergie thermique est insuffisante pour lui permettre d'occuper des états plus hauts en énergie. Il en est de même pour un trou, dans les états de valence de la boîte quantique. On espère donc, si les boîtes quantiques sont toutes identiques, que tous les électrons et les trous injectés vont travailler à la même énergie, ce qui devrait révolutionner les propriétés des lasers : on s'attend par exemple à ce que le courant de seuil soit réduit par un facteur 100 !
Cela étant dit, il faut que l'ensemble de boîtes quantiques satisfasse, pour atteindre cet objectif, un ensemble de conditions draconiennes. Tout d'abord, on veut que les états de la boîte quantique soient très bien séparés en énergie (à l'échelle de l'énergie thermique kT), de façon à ce que seul le premier état électronique de la boîte soit peuplé. Un calcul simple montre qu'alors la boîte quantique doit être plus petite que 15 nanomètres environ pour chacune de ses trois dimensions. Bien entendu, il faut aussi que les boîtes quantiques soient pratiquement identiques. En effet, la position des niveaux quantiques dans une boîte dépend de la taille de la boîte ; elle en dépend même très fortement pour un objet aussi petit, puisque l'énergie de confinement varie comme 1/L2, comme on l'a vu plus haut. On peut montrer facilement que la dispersion des tailles des boîtes quantiques doit être nettement plus petite que 15%. A notre échelle, une précision relative de 15% paraît quelque peu grossière, mais dans le cas présent, cela signifie que les boîtes quantiques doivent être fabriquées avec une précision absolue nettement meilleure que 2 nanomètres ! Enfin, il nous faut mettre en Suvre suffisamment de boîtes quantiques pour que le laser fonctionne effectivement, ce qui implique de fabriquer de l'ordre de un milliard à cent milliards de boîtes par centimètre carré. Chacune de ces trois contraintes, et a fortiori leur combinaison, paraissent extrêmement difficiles à remplir.

Comment fabriquer des boîtes quantiques ?

De nombreuses approches ont été explorées pour fabriquer des boîtes quantiques au cours des vingt dernières années. De façon imagée, on peut dire que la première à avoir fait l'objet d'un intérêt soutenu est celle du sculpteur. On part d'un puits quantique, qu'on cisèle au burin pour former un plot vertical, qui ne contient qu'une toute petite partie du puits. On forme de cette façon une boîte quantique pour laquelle l'électron est confiné suivant un axe vertical par la modulation de composition du semiconducteur (comme pour le puits quantique), et latéralement par les bords du plot. On sait fabriquer de tels objets en utilisant les outils de nanofabrication couramment employés en microélectronique, en particulier la lithographie électronique (qui permet de dessiner des motifs de taille nanométrique dans une résine à l'aide d'un faisceau d'électrons), et la gravure sèche assistée par plasma, qui permet de reproduire ce motif dans le semiconducteur. Bien qu'on ait réussi à fabriquer des boîtes quantiques par cette voie dès 1990, cette approche aujourd'hui abandonnée pose deux problèmes majeurs. D'une part, la lithographie électronique est une technique séquentielle ; il nous faut dessiner le motif désiré dans la résine boîte par boîte. Cette étape est donc fastidieuse et nécessairement coûteuse. D'autre part, on ne sait pas lithographier une résine organique à une échelle inférieure à 3 nanomètres environ. Cette approche n'est donc pas adaptée pour fabriquer un ensemble de boîtes quantiques avec le degré de précision requis pour faire un laser performant.
Fort heureusement, il s'est produit au début des années 90 deux miracles, de ceux dont la Nature a le secret. On a en effet alors découvert qu'il est possible d'obtenir des boîtes quantiques presque identiques très simplement, par auto-assemblage. Nous allons à présent présenter deux méthodes de fabrication de ce type, qui sont aujourd'hui très couramment employées.
La synthèse chimique de boîtes quantiques est assez proche de notre expérience quotidienne. Prenons une casserole d'eau salée, que nous laissons trop longtemps sur le feu. Au début, l'eau s'évapore progressivement, sans qu'on observe de changement particulier. A partir d'un certain moment, on verra cependant de tout petits cristaux de sel commencer à se déposer sur les bords de la casserole. L'eau salée a atteint sa concentration de saturation, ce qui conduit à la précipitation du sel excédentaire sous forme de petits cristaux solides. On peut faire à peu près la même chose à l'échelle nanométrique, avec des semi-conducteurs, par exemple avec le séléniure de cadmium CdSe. Dans la pratique, on prend un récipient dans lequel on met en solution de l'oxyde de cadmium dans un solvant organique. On injecte ensuite brutalement du sélénium dans la solution. Ce faisant, on dépasse le seuil de saturation pour CdSe et on déclenche la nucléation d'un très grand nombre de cristaux nanométriques de CdSe. A ce stade, les molécules de solvant viennent se fixer à la surface des nanocristaux, ce qui va ralentir leur croissance. Du fait de leur formation quasi-simultanée et de leur croissance lente, les nanocristaux conservent des tailles très voisines au cours du temps. Lorsqu'on arrête la croissance à un moment donné en cessant d'apporter du sélénium à la solution, on obtient un ensemble de nanocristaux dont la dispersion des tailles peut être de l'ordre de 5 %, ce qui est tout à fait remarquable pour des objets dont la taille n'est que de 3 nanomètres ! Cette merveilleuse homogénéité est illustrée par le cliché de microscopie électronique présenté sur la figure 4.

Figure 4 : A gauche, vue au microscope électronique d'un ensemble de nanocristaux de CdSe obtenus par synthèse chimique. La fluctuation relative de leur rayon R est de l'ordre de 5%. A droite, observation sous éclairage ultraviolet de flacons contenant des nanocristaux de CdSe dans un solvant: la couleur de la suspension colloïdale peut être ajustée dans tout le spectre visible en jouant sur la taille moyenne des nanocristaux. Remerciements à P. Reiss et J. Bleuse (CEA).

La seconde approche permet de fabriquer des boîtes quantiques par auto-assemblage en utilisant -comme pour les puits quantiques- l'épitaxie par jets moléculaires. Contrairement aux nanocristaux, ces boîtes quantiques vont pouvoir être intégrées facilement au sein d'un composant semi-conducteur, par exemple un laser. Pour présenter cette méthode, considérons une image d'une surface de GaAs sur laquelle on a déposé deux couches moléculaires (soit un demi-nanomètre en moyenne) d'InAs. Cette image, présentée figure 5, a été obtenue par microscopie à force atomique, une technique qui permet d'avoir une résolution à l'échelle atomique sur la topographie d'une surface. On constate ici la formation spontanée d'un ensemble dense d'îlots de taille nanométrique à la surface de l'échantillon. Ce mode de croissance tridimensionnel avec formation d'îlots est en fait observé pour un très grand nombre de couples de matériaux semi-conducteurs.
Pourquoi ce mode de croissance tridimensionnel est-il observé ici ? Lorsqu'on dépose par croissance épitaxiale un semiconducteur A sur un substrat S, on choisit en général deux matériaux pour lesquels la géométrie d'agencement des atomes et leurs distances mutuelles sont les mêmes. Les atomes déposés pour former la couche A adoptent alors de façon naturelle le même ordre cristallin que dans le substrat. (On rencontre une situation analogue lorsqu'on joue aux LegoTM : on peut facilement accrocher des pièces rouges sur un plan de pièces blanches). La croissance se fait alors couche atomique par couche atomique et permet de réaliser des puits quantiques. La situation est différente pour InAs et GaAs, qui ont une même structure cristalline, mais des distances inter-atomiques assez différentes (7% environ). (Une faible différence de distance entre plots d'accrochage suffit pour que les pièces de jeux de constructions différents soient incompatibles !). Pour déposer une couche d'InAs sur GaAs, il va falloir déformer la maille cristalline d'InAs, de façon à adapter la distance entre atomes voisins dans le plan de la couche au paramètre de maille du substrat. Une croissance couche par couche reste ainsi possible, mais la déformation élastique de la couche déposée a un coût en énergie important. Il y a deux solutions pour relaxer cette énergie élastique. La première repose sur la création de défauts cristallins, les dislocations. Une autre solution, adoptée par la Nature dans le cas d'InAs sur GaAs, réside dans la formation d'îlots tridimensionnels. Les atomes à la surface de l'îlot n'ayant pas d'atomes voisins, ils peuvent se « pousser de côté » pour donner plus de place aux autres. Cette morphologie particulière permet donc à la couche d'InAs contrainte de diminuer son énergie élastique.

Figure 5 : A gauche, vue au microscope à force atomique de la surface d'une couche fine d'InAs épitaxiée sur un substrat de GaAs ; les îlots d'InAs ont une hauteur moyenne de 5 nm et une largeur de 20 nm environ à leur base. A droite, vue en coupe d'un plan de boîtes quantiques d'InAs dans GaAs, obtenue par microscopie électronique. Remerciements à JM Moison et A Ponchet, CNRS.

Une fois qu'on a formé ces îlots nanométriques d'InAs, il suffit de déposer une nouvelle couche de GaAs en surface. On obtient alors des inclusions d'InAs, matériau de petite bande interdite, au milieu de GaAs, matériau de plus grande bande interdite, qui constituent de ce fait des boîtes quantiques. Ce procédé de fabrication collectif permet de réaliser en quelques secondes de l'ordre de 10 à 100 milliards de boîtes quantiques par centimètre carré. Il est de surcroît extrêmement propre, puisqu'il se déroule dans l'enceinte du bâti d'épitaxie par jet moléculaire. Quant aux fluctuations de taille, celles-ci ne dépassent pas 7 à 10% lorsque le procédé est optimisé, et sont donc d'amplitude suffisamment faible pour qu'on puisse exploiter ces boîtes quantiques dans des composants optoélectroniques.

Quelques propriétés optiques des nanocristaux et des boîtes quantiques

Considérons à présent les propriétés optiques de ces nano-objets. Nous allons voir que celles-ci présentent des signatures très claires d'effets quantiques. Observons tout d'abord la figure 4, qui présente une série de petites fioles contenant des nanocristaux en solution. Ceux-ci sont constitués du même semi-conducteur, le sélénium de cadmium CdSe. Cependant, on a laissé croître ces nano-cristaux plus ou moins longtemps d'un échantillon à l'autre, de sorte que le diamètre moyen varie graduellement de 3 nanomètres, pour la fiole de gauche à 5nm pour celle de droite. Cette variation de taille provoque un changement spectaculaire de la couleur des nano-cristaux. Cette couleur, qui est ici observée sous excitation par une lampe UV (on est donc en train d'observer l'émission des nano-cristaux), reflète l'énergie de bande interdite de ces boîtes quantiques. Parce qu'on confine fortement l'électron dans ces nano-objets, l'énergie des états électroniques, et donc la largeur de la bande interdite, sont très différentes de celle du semi-conducteur massif CdSe. En ce qui concerne les applications associées à cet effet, il faut mentionner qu'une technique très voisine est employée pour fabriquer des filtres colorés, très utilisés dans les laboratoires d'optique. Au lieu de réaliser la croissance des nanocristaux en solution, on peut en effet les faire précipiter au sein d'une matrice vitreuse, pendant que le verre est fondu. Ce procédé était déjà connu au XVIIème siècle par les artisans verriers de Murano.
Revenons à présent aux boîtes quantiques d'InAs dans GaAs obtenues par épitaxie. Lorsqu'on observe leur émission collective, on constate tout d'abord que sa distribution spectrale est centrée autour d'une énergie hn beaucoup plus grande que la bande interdite du semiconducteur massif InAs, et qui croît lorsque la taille moyenne des boîtes quantiques diminue. Ici encore, le confinement quantique des électrons et des trous entraîne une modification très marquée de la bande interdite du système et donc de ses propriétés d'émission. On constate par ailleurs que cette émission collective est distribuée sur une gamme spectrale très large, typiquement cent mille fois plus large que pour un atome ! D'où cela vient-il ? On se doute que les fluctuations de taille de boîte à boîte sont partiellement responsables de ce résultat. Pour confirmer cette hypothèse et connaître les propriétés intrinsèques des boîtes quantiques, il faut isoler et étudier une boîte quantique unique. Partant d'un plan de boîtes quantiques tel que celui de la figure 5, on va graver celui-ci de façon à définir des plots, dont la taille est de l'ordre de 100 nanomètres, et qui ne contiennent que quelques boîtes, voire une seule boîte. Lorsqu'on réalise cette expérience, on peut observer un spectre d'émission constitué de quelques raies spectrales très fines, qui correspondent chacune à une boîte quantique spécifique (voir la figure 6). Ce comportement, observé à basse température (T

Figure 6 : Spectre d'émission mesuré à basse température (10K) pour un ensemble de boîtes quantiques (à gauche) et pour une boîte quantique isolée, à droite. On notera que l'échelle des énergies est environ 100 fois plus petite pour le spectre de la boîte unique.

Lorsqu'on souhaite discuter les applications futures des boîtes quantiques, par exemple dans le domaine des lasers, il est bien entendu essentiel de considérer leurs propriétés optiques à température ambiante. Nous avons précédemment montré qu'à basse température, une boîte quantique émet, comme un atome, un rayonnement de très faible largeur spectrale. Malheureusement, on perd cette propriété très séduisante dès lors qu'on dépasse une température supérieure à une centaine de Kelvin typiquement. A température ambiante (300K), la raie d'émission observée pour une boîte unique est voisine de 10 milli-électrons volt (soit environ kT/2), ce qui est comparable à la largeur de raie observée pour un puits quantique. On est donc ici très loin de l'image de l'atome artificiel. Plus on élève la température, plus les vibrations des atomes constituant le cristal semiconducteur sont importantes. Ces vibrations cristallines viennent perturber le système électronique et de ce fait élargissent l'émission associée à une boîte unique. Ce résultat, qui n'a été découvert que relativement récemment, nous montre donc que l'image de l'atome artificiel isolé n'est pas du tout valide à haute température. Une boîte quantique est un système électronique localisé fortement couplé à son environnement. En sus de son importance conceptuelle, ce résultat nous invite à reconsidérer les applications initialement envisagées pour les boîtes quantiques.

Quelles applications pour les boîtes quantiques ?

L'observation de raies d'émission larges pour les boîtes quantiques isolées à 300K a sonné le glas du vieux rêve d'Arakawa et Sakaki : il ne sera pas possible d'obtenir un laser à boîte quantique 100 fois plus performant qu'un laser à puits quantique. L'idée de départ était d'avoir une raie d'émission très fine - pour un ensemble de boîtes quantiques très similaires- , qui permette de bien mieux utiliser les paires électron-trou injectées qu'avec un puits quantique. On voit ici que pour une raison tout à fait intrinsèque, ce couplage aux vibrations cristallines, la largeur de raie d'une boîte unique et donc a fortiori d'un plan de boîtes ne peut pas être beaucoup plus étroite que pour un puits quantique.
Très souvent, dans le monde de la recherche, lorsqu'un rêve s'écroule, dix autres naissent. C'est ici le cas. En s'attachant à étudier les propriétés spécifiques des boîtes quantiques, on leur trouve jour après jour de nombreuses opportunités d'application. Il ne saurait ici être question d'en faire une présentation exhaustive ; je n'en citerai donc que quelques unes, choisies pour leur valeur exemplaire.
Plusieurs équipes de recherche ont développé des lasers à boîtes quantiques émettant au voisinage de 1.3 µm - l'une des principales longueurs d'onde employées pour les télécommunications sur fibre optique -, lasers dont les propriétés sont beaucoup moins sensibles à la température celles des lasers à puits quantiques disponibles dans la même gamme spectrale (Cette propriété résulte de la densité d'états discrète des boîtes quantiques : faire passer un électron d'un état à un autre requiert un changement notable de son énergie). Bien que les lasers à boîtes quantiques soient un peu moins performants que les lasers à puits quantiques, leur faible sensibilité aux variations de température permet de simplifier le circuit électronique d'alimentation et de contrôle du laser, et de se dispenser de systèmes complexes de régulation en température. Cette simplification a, bien entendu, a un impact très fort en termes de coût de revient global des modules laser pour les télécommunications à 1.3 µm. Plusieurs start-ups exploitant cette opportunité ont vu le jour aux Etats-Unis, en Europe et au Japon.
C'est cependant dans un domaine différent des lasers, celui des diodes électroluminescentes, que les boîtes quantiques ont trouvé leur principal domaine d'application à ce jour. Les diodes électro-luminescentes (ou « DELs » pour light emitting diodes) représentent un marché colossal supérieur à 3 milliards d'euros par an, et de loin le plus gros marché des composants optoélectroniques. Ce composant très répandu autour de nous est employé pour des fonctions de visualisation et d'éclairage. Les écrans plats extérieurs en couleur, tel que celui que vous voyez sur la tour Montparnasse, reposent sur l'émission de dizaines de millions de DELs. Elles assurent également l'éclairage de l'écran de votre téléphone portable, du tableau de bord des véhicules automobiles récents, et sont présentes dans tous les feux de signalisation routière. Les DELs présentent en fait des avantages très importants par rapport aux lampes à incandescence. Elles consomment typiquement 10 fois moins d'énergie et sont « éternelles », en ce sens que leur durée de vie est 10 fois plus longue que la durée de vie du système dans lequel elles sont incorporées. On saisit très vite l'intérêt d'intégrer ces composants dans un système complexe tel qu'une voiture ; nul n'a envie de démonter un tableau de bord pour changer une simple ampoule ! Si on était capable de remplacer toutes les lampes à incandescence par des DELs blanches, on réduirait aussi très fortement la consommation énergétique associée à l'éclairage, et de plusieurs pour cents la consommation énergétique globale. Les enjeux associés à cette utilisation de plus en plus vaste des DELs sont donc considérables sur un plan économique mais aussi écologique.

Figure 7: Vue en coupe de la couche active d'une DEL bleue commerciale, constituée par une couche très fine d'alliage (InxGa1-x)N dans GaN. Cartographie de la composition chimique de l'alliage, obtenues par microscopie électronique. On observe un phénomène de démixtion et la formation d'inclusions de taille nanométriques très riches en indium (remerciements P. Bayle, CEA).

En 1995, ce domaine a connu une véritable révolution, avec la commercialisation par une société japonaise de DELs bleues et vertes très brillantes. Jusque là en effet, on ne savait produire efficacement de la lumière avec les DELs que dans le rouge ou l'orange. Un épais mystère était attaché au fonctionnement de ces nouvelles DELs. En effet, celles-ci sont réalisées à partir de nitrure de gallium GaN, pour lequel on ne dispose pas de substrat bien adapté à sa croissance épitaxiale. La croissance des DELs GaN est le plus souvent réalisée sur un substrat de saphir, dont le paramètre de maille cristalline est très différent de celui de GaN. De ce fait, la couche épitaxiée contient un très grand nombre de défauts, les dislocations, qui sont connus comme des « tueurs » de paires électron-trou. Celles-ci sont en effet capturées très efficacement par les dislocations, et se recombinent sur ce défaut en générant de la chaleur en lieu et place de photons. Pour les semiconducteurs usuels, on doit donc travailler avec un matériau absolument sans dislocations si on veut obtenir des DELs efficaces. L'analyse par microscopie électronique de la couche active des DELs bleues a donné la clef de ce mystère quelques années plus tard. On s'est alors rendu compte que cette couche active, qu'on croyait être un puits quantique d'alliage (InGa)N, est en fait un ensemble de boîtes quantiques. En cours de croissance, cet alliage présente en effet un phénomène de démixtion, avec formation d'agrégats de taille nanométriques riche en InN, qui constituent des boîtes quantiques (figure 7). Cette nanostructuration de la couche active a des conséquences très importantes. En effet, le piégeage des électrons et les trous dans les boîtes quantiques inhibe presque totalement leur diffusion vers les dislocations, et assure ainsi leur recombinaison radiative. Cette nanostructuration spontanée des couches d'(InGa)N a ainsi engendré un marché de plusieurs milliards d'euros par an !
Les boîtes quantiques offrent de nombreuses autres perspectives d'application, qui font actuellement l'objet d'études exploratoires. L'un des objectifs les plus séduisants est la réalisation d'une source de photons uniques, composant qui exploite l'émission d'une unique boîte quantique. Les composants considérés jusqu'ici, lasers ou DELs, fonctionnent avec des dizaines de milliards de boîtes. Travailler avec une seule boîte quantique nous permet de réaliser une fonction optoélectronique importante et originale, l'émission à la demande de photons un par un. Comme l'a expliqué Philippe Grangier dans une conférence récente de l'Université de Tous Les Savoirs, la disponibilité d'une telle source lumineuse est essentielle en vue d'une application future de la cryptographie quantique à grande échelle. Rappelons ici simplement que la cryptographie quantique propose des protocoles de communication originaux, qui s'appuient sur les lois de la mécanique quantique pour garantir une confidentialité absolue de l'information échangée. Un autre champ d'application des sources à photon unique pourrait être la métrologie. Si on est capable, à la demande, d'émettre une impulsion lumineuse contenant un et un seul photon, on pourrait aussi répéter l'opération 1 million de fois, et émettre précisément 1 million de photons. On pourrait donc utiliser cette source comme étalon de flux lumineux ou plus généralement d'énergie.
Comment préparer un photon unique ? C'est en fait relativement délicat. Un photon unique est un état quantique de la lumière, et il est absolument impossible de le générer par des moyens « classiques » par exemple à l'aide d'un laser, d'une DEL ou d'une lampe à incandescence. A titre d'exemple, lorsqu'un laser génère des impulsions lumineuses contenant en moyenne n photons, le nombre de photons présente en fait une fluctuation d'impulsion à impulsion égale à la racine de n. Pour émettre des photons un par un, il faut en fait utiliser un système quantique unique, tel qu'un atome unique. Isolons par la pensée un atome dans l'espace, et excitons le à l'aide d'un rayonnement lumineux dont la fréquence correspond à l'une de ses raies spectrales. L'absorption d'un photon par l'atome s'accompagne du passage d'un électron d'un état « b » bien défini vers un état « h » lui aussi bien défini, et d'énergie plus élevée. Dans cette nouvelle configuration électronique, l'atome ne peut plus absorber la lumière, puisque l'état « b » est vide. On voit par conséquent qu'un atome excité de cette façon ne peut stocker qu'une excitation élémentaire : lorsqu'on coupe le faisceau de pompage, il se désexcite en émettant un unique photon. En pratique, on sait piéger un atome unique dans l'espace par des méthodes optiques, mais pour une durée qui n'excède pas quelques secondes. Il est ici beaucoup plus commode d'employer une boîte quantique comme « atome artificiel » pour réaliser la même fonction. En collaboration avec des collègues du CNRS, nous avons proposé un protocole original, qui permet de générer des photons un par un à la demande à l'aide d'une boîte quantique. Celui-ci tire en fait parti de la forte interaction de Coulomb entre électrons et trous piégés dans une même boîte. La boîte quantique peut être excitée au choix à l'aide d'un faisceau optique ou à l'aide d'une impulsion électrique, ce qui ouvre la voie au développement de sources de photons uniques compactes et pratiques pour la cryptographie quantique. Plusieurs dizaines d'équipes dans le monde y travaillent aujourd'hui.
Je présenterai enfin un nouvel exemple d'application des nano-cristaux semiconducteurs. A la différence des boîtes quantiques obtenues par croissance sur un substrat, ceux-ci peuvent être dispersés dans différents milieux, en particulier liquides. Ils constituent aujourd'hui une classe de marqueurs fluorescents particulièrement intéressante pour la biologie. On sait aujourd'hui assurer la biocompatibilité de ces nano-objets, ainsi que leur solubilisation dans les liquides physiologiques, en les enrobant par exemple de silice. On sait aussi greffer sur leur surface du matériel biologique, par exemple une protéine ou un fragment d'ADN monobrin, afin de le fonctionnaliser. En cartographiant l'émission des nanocristaux dans l'espace, on peut voir où ce matériel biologique est allé se fixer à l'intérieur d'un organisme, éventuellement jusqu'à l'échelle intracellulaire. Bien qu'il existe des colorants organiques qui remplissent une fonction similaire, les nanocristaux présentent des atouts très importants. Tout d'abord, ils sont dix à cent fois plus stables dans le temps, ce qui permet de faire de longues expériences. Ensuite, le spectre de leur émission est moins large ; il est donc possible d'employer en parallèle des nanocristaux émettant dans des gammes de longueur d'onde différentes et d'obtenir simultanément des informations de nature différente. Enfin, leur biocompatibilité est bien supérieure à celle des colorants organiques, qui sont pour la plupart hautement toxiques.

En conclusion, je voudrais conclure cette présentation, en soulignant le caractère extrêmement vivant de ce domaine. Loin d'être figées, les techniques de nanofabrication font l'objet de nombreux développements, qui permettent par exemple de construire des systèmes quantiques plus complexes (« molécules artificielles » constituées d'un assemblage de boîtes quantiques, dopage par des atomes magnétiques, intégration de boîtes quantiques dans des microrésonateurs optiques...). Mois après mois, de nouveaux résultats viennent enrichir la palette des effets quantiques observables avec les nanostructures semi-conductrices et élargir leur champ d'application potentiel.

*CEA Grenoble, CEA/DRFMC/SP2M, 17 rue des Martyrs, 38054 Grenoble Cedex 9.
Adresse électronique : jean-michel.gerard@cea.fr

[1] Remarquons que l'électron reste libre de se mouvoir dans le plan du puits quantique ; l'énergie cinétique associée à ce mouvement peut prendre une valeur positive quelconque.

 

 DOCUMENT       canal-u.tv     LIEN

(pour  consulter  la  vidéo, inscrire  le TITRE  dans  le  moteur  de  recherche  de  CANAL U )

 

 
 
 
 

LES MATÉRIAUX MAGNÉTIQUES

 

LES MATÉRIAUX MAGNÉTIQUES : DE LA BOUSSOLE À L'ÉLECTRONIQUE DE SPIN


Le mot magnétisme reste chargé de mystères, pourtant les phénomènes magnétiques sont connus depuis trois mille ans et les matériaux magnétiques sont omniprésents dans notre environnement. Le but de cet exposé est de tenter de lever ces mystères et d'expliquer la formidable importance des matériaux magnétiques dans nos sociétés développées. La conférence va débuter par un bref historique des matériaux magnétiques, depuis leur découverte en Asie mineure et en Chine jusqu'aux développements les plus récents. On verra ensuite ce qu'est le magnétisme, le champ ou induction magnétique est produit par une charge électrique en mouvement. C'est une conséquence directe de la théorie de la relativité d'Einstein. Ce champ magnétique induit une force sur toutes les particules en mouvement, c'est là l'origine de toutes les forces magnétiques. A l'échelle atomique ce sont le mouvement des électrons autour des noyaux des atomes et le mouvement propre de ces mêmes électrons (mouvement de rotation) qui sont à l'origine des deux types de moments magnétiques atomiques : le moment orbital et le spin. Les liaisons chimiques tendent à compenser ces moments magnétiques, sauf, dans le cas où survivent à ces liaisons des couches atomiques incomplètes, comme celle des métaux dits de transition ou celles des métaux dit de la famille des terres rares. On abordera, ensuite, un aperçu de la diversité des matériaux magnétiques, les matériaux ferromagnétiques paramagnétiques et diamagnétiques...On montrera les fondements physiques des propriétés magnétiques et on décrira un certain nombre de matériaux spécifiques comme les aimants permanents, les différentes bandes magnétiques ou les mémoires...On terminera cet exposé par une description des tendances actuelles dans la science et la technologie des matériaux magnétiques : le nanomagnétisme et l'électronique de spin.

Texte de la 230e conférence de l’Université de tous les savoirs donnée le 17 août 2000.Les matériaux magnétiques : de la boussole à l'électronique de spinpar Michel Piecuch Les matériaux magnétiques sont omniprésents dans notre environnement. Une voiture moderne, par exemple, peut contenir jusqu'à 70 dispositifs différents utilisant ces matériaux comme des moteurs électriques, des actionneurs ou transmetteurs de mouvement, des capteurs... Leur présence cachée au sein d'innombrables objets technologiques reste cependant mystérieuse comme le mot lui même. Nous essayerons, dans la suite, d'éclairer le fonctionnement de ces matériaux et les concepts scientifiques qui les sous tendent. Un peu d'histoire L'histoire des matériaux magnétiques remonte à une époque très ancienne, à peu près contemporaine à la découverte du fer. Les premières mentions de l'existence des aimants écrites par les Grecs, datent d'environ 800 avant Jésus-Christ*, le nom de « magnétés » est rapporté par plusieurs philosophes. L'origine de ce nom est controversée, ma version préférée est celle de William Gilbert, médecin de la reine Élisabeth I qui dit la tenir de Pline, le nom de magnétite viendrait du nom du berger Magnés : « Les clous de ses sandales et le bout ferré de son bâton pastoral se sont collés à une pierre magnétique quand il gardait son troupeau ». Parallèlement aux grecs, les chinois découvrirent également les aimants, mais ils remarquèrent, découverte décisive, la directivité des pierres d'aimants dans le champ magnétique terrestre. Un instrument directif constitué d'une cuillère posée sur un plateau est représenté dans une peinture datant d'environ 50 après Jésus-Christ. Une boussole chinoise classique est constituée d'un poisson en fine tôle de fer porté au rouge puis trempé dans l'eau froide et mis au dessus d'un bol d'eau; il indique le nord magnétique (vers l'an 1000). En Europe, le premier livre sérieux sur le sujet De Magnete fut publié par Pierre Pèlerin de Maricourt en 1269. Il fut celui qui parla le premier de pôle magnétique. La science moderne du magnétisme est plus tardive et date des découvertes de Charles Augustin Coulomb. En utilisant une balance de torsion, il établit la loi de variation de la force magnétique en fonction de la distance (1785). Une expérience très importante fut faite en avril 1820 par le physicien danois Hans Christian Oersted. Il montra qu'un fil parcouru par un courant électrique produit un champ magnétique : « une boussole placée à proximité de ce fil est déviée quand le fil est parcouru par un courant électrique ». Cette découverte est à l'origine de tous les moteurs électriques : l'interaction d'un matériau magnétique avec un courant électrique produit du mouvement. Michael Faraday découvrit, l'année suivante (1821), le phénomène d'induction : un champ magnétique variable placé à proximité d'une spire crée un courant électrique dans cette spire. C'est la découverte du processus qui produit de l'électricité dans les dynamos et les alternateurs. Avec les découvertes d'Oersted et de Faraday s'ouvrait l'ère de la deuxième révolution industrielle, on avait les moyens de produire de l'électricité et on savait l'utiliser pour faire des moteurs. La physique du magnétisme CONCEPTS DE BASE Les deux concepts centraux dans la physique du magnétisme sont les concepts de champ et de moment magnétique. L'objet magnétique le plus simple est un aimant permanent. Cet aimant exerce une force sur un autre aimant ou sur des matériaux magnétiques comme le fer. Si on observe deux aimants en train d'interagir, ils s'attirent ou se repoussent, il y a une action à distance, c'est le champ magnétique produit par l'un des aimants qui interagit avec l'autre aimant. Si l'un des deux aimants est libre, il tourne si il est dans le « mauvais sens », on dit que l'aimant a deux pôles. Deux pôles identiques se repoussent, deux pôles différents s'attirent. Pour préciser cette notion de pôles, on définit le moment magnétique, qui est un vecteur allant du pôle sud au pôle nord. Un aimant possède donc un moment magnétique et ce moment produit un champ magnétique. Le plus simple des circuits électriques est une boucle de courant. Elle est équivalente à un aimant permanent (fig. 1). Le moment magnétique de la boucle est un vecteur perpendiculaire au plan de la boucle et dont l'intensité est donnée par le produit de l'intensité du courant électrique passant dans la boucle par sa surface. Le champ magnétique produit par la boucle est alors donné par les mêmes formules que le champ électrique produit par un dipôle électrique (deux charges de signe contraire). Figure 1 Une boucle de courant (un circuit) et un aimant sont des sources de champ magnétique équivalentes, on les représente par un vecteur, le moment magnétique. La force exercée par un champ magnétique sur un moment magnétique (par un aimant sur un autre aimant par exemple), repose sur un principe très simple : elle est fondée sur la recherche de l'énergie minimum. L'énergie d'interaction entre un champ magnétique et un moment magnétique est donnée par le produit scalaire des deux vecteurs : Où q est l'angle entre les deux vecteurs. Le moment magnétique d'un aimant va donc vouloir s'aligner avec le champ magnétique (pour rendre l'angle plus petit ou le cosinus plus grand), il va tourner, et ensuite l'aimant va aller vers le champ maximum, comme le champ croit quand on s'approche d'un aimant, c'est ce qui explique l'attraction de deux aimants. L'ORIGINE MICROSCOPIQUE La mécanique quantique décrit le mouvement des électrons dans les atomes. Classiquement, on peut imaginer, un électron en train de décrire une orbite autour du noyau de l'atome. Cette charge électrique en train de tourner est équivalente à une boucle de courant et produit donc un champ magnétique, le moment magnétique correspondant est appelé moment magnétique orbital. L'électron a un autre moment magnétique, que l'on peut imaginer comme correspondant au mouvement de rotation propre de l'électron (l'électron comme la terre tourne autour du noyau (le soleil) et sur lui même), mais qui, en fait, ne peut être compris qu'avec la mécanique quantique. Ce moment magnétique est proportionnel à un vecteur décrivant cet état de rotation propre que l'on appelle « le spin ». Une telle description tend à faire croire que tous les atomes portent un moment magnétique (somme des moments orbitaux et de spin de tous les électrons présents dans l'atome). Cependant, le principe de remplissage des différents états électroniques de l'atome, le principe d'exclusion de Pauli (les électrons sont d'incorrigibles individualistes et on ne peut avoir deux électrons dans le même état) et la construction par couches successives font que les moments magnétiques se compensent. Dans une couche complète, par exemple, deux électrons ne peuvent avoir le même état orbital que si leurs spins sont différents c'est à dire opposés (un des électrons tourne dans un sens, l'autre dans l'autre). Malgré tout, pour des couches atomiques incomplètes, il reste un moment magnétique atomique et donc presque tous les atomes portent un moment, l'unité de moment magnétique des atomes est le magnéton de Bohr qui correspond au moment de spin d'un électron indépendant. Quand on construit des molécules, les mécanismes qui régissent les liaisons chimiques sont fondés sur la construction de couches complètes (deux atomes, dont l'un a N électrons de valence (les électrons de sa couche incomplète) et l'autre M, forment une liaison chimique si M+N=8, c'est à dire si le nombre total d'électrons de valence correspond à une couche complète) et donc les molécules ne portent pas de moments magnétiques (dans une couche complète il y a autant d'électrons de spin dans un sens que dans l'autre et autant d'électrons tournent autour du noyau dans un sens que dans l'autre). Ces composés acquièrent cependant un moment sous l'action d'un champ magnétique, ce moment tend à créer une réaction au champ appliqué : il lui est opposé, ces matériaux dit diamagnétiques sont donc repoussés par un champ. Quand les atomes possèdent des couches qui n'interviennent pas ou peu dans la liaison chimique, comme les électrons dit « d » des métaux de transition dont la première série va du scandium au cuivre en passant par le fer, le cobalt et le nickel, ou comme les électrons « f » des terres rares (série qui va du lanthane au lutécium en passant par le gadolinium), les atomes conservent un moment magnétique dans l'état solide. L'état le plus simple de ces solides est l'état paramagnétique où les moments magnétiques des différents atomes sont désordonnés, un paramagnétique a un moment global qui est donc la somme vectorielle de moments désordonnés, ce moment global est nul sous champ nul. Quand on applique un champ, il lui est proportionnel et est dans le même sens que lui. LE COMPORTEMENT COLLECTIF DES MOMENTS MAGNÉTIQUES ATOMIQUES Les moments magnétiques d'atomes différents interagissent entre eux, de façon directe par ce qu'on appelle l'interaction dipolaire (le champ magnétique créé par un moment magnétique interagit avec un autre moment pour l'aligner dans le champ produit), mais aussi et surtout par des effets plus subtils que l'on appelle interaction d'échange, produisant une énergie d'interaction entre les moments magnétiques de deux atomes. Il existe deux types d'interactions : l'interaction ferromagnétique qui favorise la configuration où les deux moments magnétiques sont parallèles et l'interaction antiferromagnétique qui favorise l'état où les deux moments sont antiparallèles. Un matériau ferromagnétique est un matériau où toutes les interactions sont ferromagnétiques. Il a donc un moment permanent macroscopique qui est la somme de tous les moments magnétiques de ses atomes (qui sont tous parallèle). Un matériau antiferromagnétique a ses moments alternativement dans un sens puis dans l'autre, il se comporte globalement comme un paramagnétique puisque son moment global (la somme des moments magnétiques atomiques ou aimantation) est également nul en l'absence de champ appliqué. La théorie du ferromagnétisme fut faite par Pierre Weiss au début de ce siècle, la théorie de l'antiferromagnétisme par Louis Néel en 1932 ( Prix Nobel 1970). Cette description de l'ordre est valable au zéro absolu, si on augmente la température, deux mécanismes sont en compétition, la température, d'une part, tend à favoriser l'agitation thermique et donc le désordre des moments et l'énergie d'interaction, d'autre part, tend à aligner ces moments. Il y a donc, une température dite température de Curie (dans un ferromagnétique) au dessous de laquelle les spins de tous les atomes sont rangés (au dessus de la température de Curie le désordre l'emporte sur l'ordre et le solide devient paramagnétique). LES MATÉRIAUX FERROMAGNETIQUES La plupart des matériaux magnétiques utilisés dans des applications sont ferromagnétiques. Le comportement d'un ferromagnétique sous champ appliqué est décrit par ce qu'on appelle le cycle d'hystérésis (fig. 2). Si on part d'une situation où le corps ferromagnétique a un moment global nul et l'on applique un champ, le moment magnétique mesuré va croître assez rapidement jusqu'à une situation où tous les moments magnétiques atomiques sont alignés avec le champ extérieur, c'est la saturation qui correspond pour du fer métallique, par exemple, à 2,2 magnétons de Bohr par atomes. Ensuite, si on abaisse le champ pour l'annuler, la courbe n'est pas réversible, en champ nul il reste un moment magnétique global ou aimantation rémanente, et il faut appliquer un champ magnétique négatif (le champ coercitif) pour supprimer ce moment. Figure 2 Cycle d'hystérésis. Après saturation, la baisse du champ magnétique appliqué conduit à l'aimantation rémanente MR et il faut appliquer un champ magnétique négatif suffisant, le champ coercitif HC pour annuler à nouveau l'aimantation. Ce cycle d'hystérésis est essentiellement expliqué par la théorie des domaines. Quand Pierre Weiss proposa sa théorie des matériaux ferromagnétiques : l'alignement spontané des moments magnétiques atomiques, une objection lui vint naturellement, pourquoi existe t-il des états de ferromagnétiques où l'aimantation est nulle? Il trouva la réponse, un matériau ferromagnétique dans son état totalement ordonné crée un champ magnétique considérable à l'extérieur mais aussi à l'intérieur de lui même, ce champ dit champ démagnétisant est opposé à l'aimantation et donc son interaction avec les moments magnétiques coûte de l'énergie. Pour minimiser cet effet Pierre Weiss a proposé que, sous champ nul, une substance ferromagnétique soit constituée de nombreux domaines d'aimantations opposées, qui fassent que le champ démagnétisant soit diminué ou supprimé, c'est effectivement ce qu'on observe. On comprend alors la courbe d'hystérésis décrite plus haut : l'échantillon avait au départ une structure en domaines et une aimantation nulle. Le champ magnétique a déplacé les parois de domaines jusqu'à les supprimer pour atteindre la saturation. Quand on abaisse le champ, on peut créer des domaines, mais cela coûte de l'énergie (énergie de paroi) et il reste donc une aimantation rémanente. Les applications LES AIMANTS PERMANENTS OU MATÉRIAUX DURS On classe les matériaux ferromagnétiques suivant la valeur de leurs champs coercitifs, les matériaux dits durs sont les matériaux qui ont un grand champ coercitif, les matériaux doux sont les matériaux qui ont un champ coercitif faible (historiquement, les aciers mécaniquement doux avaient le champ coercitif le plus faible). Les matériaux magnétiques les plus spectaculaires sont les aimants permanents, un aimant permanent est un matériau ferromagnétique à fort champ coercitif, c'est un matériau dur. Il est aimanté à saturation, puis on annule le champ appliqué et comme il a un champ coercitif très élevé, il garde une aimantation forte, les aimants permanents modernes sont des alliages de métaux de terre rare et de fer ou de cobalt. L'utilisation la plus courante de ces aimants permanents est la construction des moteurs électriques. Mais ils sont aussi utilisés dans de multiples capteurs. LES MATÉRIAUX DOUX Les matériaux doux dont le prototype est l'acier au silicium sont utilisés dans les transformateurs. Un transformateur est une boucle d'aimant, un enroulement électrique fait N tours autour de la boucle et aimante le matériau, les variations de flux produites (si le courant est alternatif) sont transmise à travers l'aimant à un autre enroulement de n spires et produisent dans ces spires une force électromotrice, le rapport des tensions est donné par le rapport n/N du nombre de spires. Un électroaimant fonctionne sur le même principe mais avec un seul circuit excitateur et une coupure dans le matériau magnétique l'entrefer où l'on peut utiliser le champ magnétique produit. Les matériaux doux sont aussi utilisés dans les alternateurs et dans de nombreux dispositifs de l'électrotechnique. L'ENREGISTREMENT MAGNÉTIQUE Une autre application courante est l'enregistrement magnétique. Le principe de l'enregistrement magnétique est extrêmement simple, on utilise l'hystérésis des matériaux magnétiques pour stocker des informations, un signal d'entrée aimante le média (disque ou bande) et le média conserve ensuite un moment magnétique proportionnel au signal (dans le cas analogique) ou un moment dans un sens (le 1) ou dans l'autre (le 0) dans le cas digital. Ensuite, en lecture, la tête passe devant le média et détecte des changements de flux en présence ou en absence de moment magnétique. Les médias sont en général des matériaux ferromagnétiques, les bandes magnétiques sont constitués de petits grains de divers matériaux (oxydes de fer, de chrome, fer métal...) dispersés dans une matrice plastique. Les disques durs d'ordinateurs comportent une couche mince de matériau magnétique déposée par les techniques modernes et gravée en pistes. Les recherches actuelles Les recherches actuelles sur les matériaux magnétiques ont été stimulées par une découverte faite à Orsay en 1998. Il s'agit de la magnétorésistance géante. La résistance d'un métal magnétique ordinaire dépend du champ magnétique extérieur appliqué mais cet effet est très faible, aussi le monde du magnétisme fut très surpris par la découverte du groupe d'Albert Fert à Orsay en 1988. Ces chercheurs ont mesuré la résistance sous champ magnétique d'une multicouche fer/chrome (empilement de quelques dizaines de couches identiques de fer et de chrome d'épaisseurs de l'ordre du nanomètre (milliardième de mètre)) et ont trouvé une variation de résistance très importante (plusieurs dizaines de %) sous des champs appliqués relativement modestes. Albert Fert expliqua l'effet observé. Il était bien connu depuis les années 60 que les électrons des deux types de spin dans un métal ferromagnétique ont une résistivité différente, les électrons dont le spin est antiparallèle à l'aimantation conduisent mieux que ceux qui ont un spin parallèle à cette aimantation (ou l'inverse suivant les métaux). Dans les multicouches fer/chrome, deux couches de fer voisines subissent une interaction antiferromagnétique à travers le chrome, leurs moments magnétiques sont donc opposés en champ nul, un champ élevé détruit cet ordre antiferromagnétique en mettant tous les moments parallèles. En champ nul, un électron a donc un spin parallèle à l'aimantation dans une couche et antiparallèle dans la couche adjacente, la résistance est la moyenne de la résistance des deux spins. En champ élevé, un électron a, soit son spin toujours parallèle à l'aimantation et une grande résistance, soit toujours antiparallèle et donc une résistance très faible. C'est cet effet de court circuit pour une partie des électrons qui produit la magnétorésistance géante (un électron très bien portant vaut mieux que deux électrons a moitié malades). Cette découverte encouragea la recherche technologique sur de nouveaux capteurs de champs magnétiques, on utilisa les techniques de gravure et de dépôts qui avaient été développées dans le domaine des semi-conducteurs durant les années 80 pour construire des dispositifs gravés en couches très minces. Les applications de ces capteurs sont multiples (par exemple dans le freinage ABS des voitures) mais ils sont principalement utilisés dans les têtes de lecture des disques durs d'ordinateurs. Une tête magnétoresistive typique est séparée en deux parties, une tête d'écriture qui est une spire génératrice de champ et une tête de lecture qui est magnétoresistive. Depuis l'introduction des têtes magnétoresistives, la capacité des disques durs croit deux fois plus vite, on approche actuellement de 1gigabit/cm2 (un disque standard actuel a une capacité de 2 gigabits mais une surface beaucoup plus grande que 2 cm2). Les premières têtes magnétorésistances, tout en utilisant les techniques de gravure et de films minces, reposaient sur la magnétorésistance classique, la deuxième génération utilise l'effet découvert par Albert Fert. Enfin la troisième reposera sur un nouvel effet, la magnétorésistance tunnel. Au début des années 90 des chercheurs du MIT à Boston ont redécouvert l'effet tunnel polarisé en spin qui avait été mis en évidence dans les années 70 à Rennes par Jullière. Cet effet est depuis lors l'objet d'une compétition acharnée de part et d'autre de l'Atlantique pour préparer les capteurs de demain. La physique de base est extrêmement simple, on élabore un objet où deux couches ferromagnétiques sont séparées par une couche isolante très mince (quelques nanomètres), on trouve un moyen pour que les deux couches magnétiques aient la possibilité d'avoir leurs aimantations parallèles puis antiparallèles, enfin, on mesure le courant transmis à travers l'isolant dans les deux cas. Le courant peut varier énormément entre les deux configurations magnétiques. La possibilité de faire passer du courant à travers un isolant très mince est un effet purement quantique et est dû au caractère ondulatoire des électrons, les électrons passent à travers l'isolant qui devrait les arrêter comme la lumière passe à travers une couche très mince de métal alors qu'elle devrait être totalement réfléchie. L'intérêt par rapport aux couches à magnétorésistance géante est que la résistance du dispositif est relativement grande, ce qui permet de le rendre très petit. L'existence de deux types d'électrons dans un ferromagnétique (ceux de spin parallèle à l'aimantation et ceux de spin antiparallèle) ayant des comportements de transport différent a amené les physiciens du magnétisme à faire l'analogie avec les semi-conducteurs où deux types de charges, les électrons et les trous, produisent des propriétés qui sont à la base de l'électronique moderne. On proposa donc le transistor magnétique : un transistor magnétique typique est constitué de trois couches avec une électrode de commande, la grille, qui contrôle le passage du courant entre les deux autres. Plusieurs applications de ces transistors magnétiques sont envisagées comme les capteurs, les magnétomètres, l'enregistrement, l'électronique proprement dite (remplacement des transistors à semi-conducteurs) mais surtout les mémoires non volatiles. Actuellement, la mémoire centrale d'un ordinateur est une mémoire à semi-conducteur qui nécessite un rafraîchissement constant et surtout qui perd toutes ses informations quand on coupe le courant. Dans le dispositif à mémoire magnétique, l'élément de mémoire individuel est une tricouche comme celle décrite ci dessus et les deux états 0 et 1 sont les états d'aimantation antiparallèle et parallèle, les temps d'accès de ces mémoires sont du même ordre de grandeur que celles à semi-conducteurs mais elles ont l'avantage considérable d'être permanentes, elles ne sont pas effacées quand on coupe le courant. Ces mémoires sont appelées MRAM ( magnetic random access memory). Petite conclusion Les matériaux magnétiques ont constamment accompagné l'histoire du progrès technique depuis le début de l'age du fer. L'utilisation de la boussole a permis l'essor du commerce maritime qui est à l'origine de la première révolution industrielle. Les découvertes d'Oersted et de Faraday au siècle dernier ont permis le développement des moteurs électriques et des alternateurs et ont conduit à la deuxième révolution industrielle. De multiples dispositifs de mémoire magnétique sont utilisés et seront utilisés dans les ordinateurs et les machines d'enregistrement qui permettent la troisième révolution industrielle celle de l'information et de la communication. La recherche actuelle sur les matériaux magnétiques est toujours très féconde et développe de nouvelles voies comme l'électronique de spin qui sera peut être la technique dominante pour les machines intelligentes au début du siècle prochain.
* Des références historiques plus détaillées peuvent être trouvées dans "Magnétisme", volume 1 Fondements. Sous la direction d'Etienne du Trémolet de Lachaisserie Presses universitaire de Grenoble 1999.

 

 DOCUMENT       canal-u.tv     LIEN

 

(pour  consulter  la  vidéo, inscrire  le TITRE  dans  le  moteur  de  recherche  de  CANAL U )

 


 
 
 
 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

 

 

 

 

 

 

Transcription de la 580e conférence de l'Université de tous les savoirs prononcée le 23 juin 2005

De l'atome au cristal : Les propriétés électroniques de la matière

Par Antoine Georges

Les ordres de grandeur entre l'atome et le matériau :

1. Il existe entre l'atome et le matériau macroscopique un très grand nombre d'ordres de grandeur, d'échelles de longueur. Prenons l'exemple d'un lingot d'or : quelqu'un muni d'une loupe très puissante pourrait observer la structure de ce matériau à l'échelle de l'atome : il verrait des atomes d'or régulièrement disposés aux nSuds d'un réseau périodique. La distance entre deux de ces atomes est de l'ordre de l'Angstrom, soit 10-10m. Ainsi, dans un lingot cubique de un millimètre de côté, il y a 10 millions (107) d'atomes dans chaque direction soit 1021 atomes au total ! Les échelles spatiales comprises entre la dimension atomique et macroscopique couvrent donc 7 ordres de grandeur. Il s'agit alors de comprendre le fonctionnement d'un système composé de 1021 atomes dont les interactions sont régies par les lois de la mécanique quantique.

2. Malheureusement, une telle loupe n'existe évidemment pas. Cependant, il est possible de voir les atomes un par un grâce à des techniques très modernes, notamment celle du microscope électronique à effet tunnel. Il s'agit d'une sorte de « gramophone atomique », une pointe très fine se déplace le long d'une surface atomique et peut détecter d'infimes changements de relief par variation du courant tunnel (voir plus loin). Cette découverte a valu à ses inventeurs le prix Nobel de physique de 1986 à Gerd Karl Binnig et Heinrich Rohrer (Allemagne).

3. Nous pouvons ainsi visualiser les atomes mais aussi les manipuler un par un au point de pouvoir « dessiner » des caractères dont la taille ne dépasse pas quelques atomes ! (Le site Internet www.almaden.ibm.com/vis/stm/gallery.html offre de très belles images de microscopie à effet tunnel). Cette capacité signe la naissance du domaine des nanotechnologies où la matière est structurée à l'échelle atomique.

4. Les physiciens disposent d'autres « loupes » pour aller regarder la matière à l'échelle atomique. Parmi elles, le synchrotron est un grand anneau qui produit un rayonnement lumineux très énergétique et qui permet de sonder la structure des matériaux, des molécules ou des objets biologiques, de manière statique ou dynamique. Les applications de ce genre de loupe sont innombrables en physique des matériaux, chimie, biologie et même géologie (par pour l'étude des changements structuraux des matériaux soumis à de hautes pressions).

5. Il existe encore bien d'autres « loupes » comme par exemple la diffusion de neutrons, la spectroscopie de photo-émission, la résonance magnétique... Dans la diffusion de neutrons, un neutron pénètre un cristal pour sonder la structure magnétique du matériau étudié.

La grande diversité des matériaux :

6. Ces différentes techniques révèlent la diversité structurale des matériaux, qu'ils soient naturels ou artificiels. Le sel de cuisine, par exemple, a une structure cristalline très simple. En effet, il est composé d'atomes de sodium et de chlore régulièrement alternés. Il existe également des structures plus complexes, comme par exemple les nanotubes de carbone obtenus en repliant des feuilles de graphite sur elles-mêmes ou la célèbre molécule C60 en forme de ballon de football composée de 60 atomes de carbone (fullerènes)

7. Tous ces matériaux peuvent être soit présents à l'état naturel soit élaborés de manière artificielle. Cette élaboration peut être faite plan atomique par plan atomique en utilisant une technique appelée « épitaxie par jet moléculaire » dans laquelle un substrat est bombardé par des jets moléculaires. Les atomes diffusent pour former des couches monoatomiques. Cette technique permet alors de fabriquer des matériaux contrôlés avec une précision qui est celle de l'atome.

8. La diversité des matériaux se traduit donc pas une grande diversité des structures, mais aussi de leurs propriétés électroniques. Par exemple, la résistivité (c'est-à-dire la capacité d'un matériau à s'opposer au passage d'un courant : R=U/I) varie sur 24 ordres de grandeurs entre de très bons conducteurs et un très bon isolant, ce qui est encore bien plus que les 7 ordres de grandeurs des dimensions spatiales. Il existe donc des métaux (qui sont parfois de très bons conducteurs), des isolants (de très mauvais conducteurs), des semi-conducteurs et même des supraconducteurs. Ces derniers sont des métaux, qui en dessous d'une certaine température, n'exercent aucune forme de résistance et ne dissipent aucune énergie. D'autres matériaux encore voient leur gradient thermique évoluer en fonction du courant qui les traverse, ceci permet par exemple de fabriquer du « froid » avec de l'électricité ou fabriquer de l'électricité avec de la chaleur, ce sont des thermoélectriques. Enfin, la résistivité de certains matériaux est fonction du champ magnétique dans lequel ils sont placés.

9. Ces diversités, autant structurales qu'électroniques, sont et seront de plus en plus mises à profit dans d'innombrables applications. Nous pouvons citer parmi elles, le transistor, le circuit intégré, le lecteur CD, l'imagerie par résonance magnétique etc. Derrière ces applications pratiques, il y a des problèmes de physique et de chimie fondamentales, et pour parfaitement comprendre l'origine de cette diversité, il faut remonter aux lois de la mécanique quantique. Il s'agit donc de jeter un pont entre l'échelle macroscopique et le monde quantique, à travers ces fameux 7 ordres de grandeurs. Particulièrement dans ce domaine, les sciences théoriques et expérimentales interagissent énormément. Nous allons donc partir de l'échelle atomique pour essayer de comprendre le comportement macroscopique d'un matériau.

De l'atome au matériau :

10. Commençons donc par la structure atomique. Un atome est composé d'un noyau, autour duquel gravitent des électrons. L'électron est environ 2000 fois plus léger que les protons et neutrons, constituants de base du noyau. La taille de cet ensemble est d'environ 10-10m (un Angstrom).

11. Le système {noyau+électron} semble comparable au système {Terre+soleil}, dans ce cas, l'électron tournerait sur une orbite bien régulière autour du noyau. Il n'en n'est rien. Même si les physiciens ont, pour un temps, cru au modèle planétaire de l'atome, nous savons depuis les débuts de la mécanique quantique que le mouvement de l'électron est bien différent de celui d'une planète !

12. La première différence notable est que l'électron ne suit pas une trajectoire unique. En fait, nous ne pouvons trouver l'électron qu'avec une certaine probabilité dans une région de l'espace. Cette région est appelée orbitale atomique. La forme de ce nuage de probabilités dépend de l'énergie de l'électron et de son moment cinétique. Si cette région est sphérique, on parle d'orbitale « s », (cas de l'atome d'hydrogène où seul un électron tourne autour du noyau). On parle d'orbitale « p » lorsque le nuage de probabilités est en forme de 8, (atome d'oxygène). Enfin, lorsque ce nuage prend une forme de trèfle à quatre feuilles, on parle d'orbitale « d » (atome de fer). Ainsi, il n'existe pas de trajectoires à l'échelle quantique, mais uniquement des probabilités de présence.

13. De plus, l'énergie d'un électron ne peut prendre que certaines valeurs bien déterminées, l'énergie est quantifiée (origine du terme quantique). La localisation de ces différents niveaux d'énergies et la transition entre ces niveaux par émission ou par absorption a été à l'origine de la mécanique quantique. Ces travaux ont valu à Niels Bohr le prix Nobel de physique de 1922. L'état d'énergie le plus bas est appelé état fondamental de l'atome. Il est par ailleurs possible d'exciter l'électron (avec de la lumière, par exemple) vers des niveaux d'énergie de plus en plus élevés. Ceci est connu grâce aux spectres d'émission et d'absorption de l'atome, qui reflètent les différents niveaux d'énergie possibles.

14. La troisième particularité du mouvement de l'électron est son Spin, celui-ci peut être représenté par une représentation imagée : l'électron peut tourner sur lui-même vers la gauche ou vers la droite, en plus de sa rotation autour du noyau. On parle de moment cinétique intrinsèque ou de deux états de Spin possibles. Pauli, physicien autrichien du XXéme siècle, formula le principe d'exclusion, à savoir qu'un même état d'énergie ne peut être occupé par plus de deux électrons de Spin opposé. Nous verrons plus loin qu'il est impossible de connaître l'état macroscopique d'un matériau sans tenir compte du principe d'exclusion de Pauli. Pour l'atome d'hélium par exemple, la première (et seule) couche contient deux atomes et deux seulement, il serait impossible de rajouter un atome dans cette couche, elle est dite complète.

15. On peut considérer grâce à ces trois principes (description probabiliste, niveaux d'énergies quantifiés et principe d'exclusion) que l'on remplit les couches électroniques d'un atome avec les électrons qui le constituent. Les éléments purs, dans la nature, s'organisent alors de manière périodique, selon la classification de Mendeleïev. Cette classification a été postulée de manière empirique bien avant le début de la mécanique quantique, mais cette organisation reflète le remplissage des couches atomiques, en respectant le principe d'exclusion de Pauli.

16. Un autre aspect du monde quantique est l'effet tunnel. Dans le microscope du même nom, cet effet est mis à profit pour mesurer une variation de relief. L'effet tunnel est une sorte de « passe-muraille quantique ». En mécanique classique, un personnage qui veut franchir un obstacle doit augmenter son niveau d'énergie au dessus d'un certain niveau. En mécanique quantique, en revanche, il est possible de franchir cet obstacle avec une certaine probabilité même si notre énergie est inférieure au potentiel de l'obstacle. Bien sûr, cette probabilité diminue à mesure que cette différence d'énergie augmente.

17. Cet effet tunnel assure la cohésion des solides, et permet aussi à un électron de se délocaliser sur l'ensemble d'un solide. Cet effet tunnel est possible grâce à la dualité de l'électron : il est à la fois une particule et une onde. On peut mettre en évidence cette dualité grâce à l'expérience suivante : une source émet des électrons un par un, ceux-ci ont le choix de passer entre deux fentes possibles. La figure d'interférence obtenue montre que, bien que les électrons soient émis un par un, ils se comportent de manière ondulatoire.

18. Les électrons des couches externes de l'atome (donc les moins fortement liés au noyau) vont pouvoir se délocaliser d'un atome à l'autre par effet tunnel. Ces « sauts », sont à l'origine de la cohésion d'un solide et permettent également la conduction d'un courant électronique à travers tout le solide.

19. Une autre conséquence de cet effet tunnel est que l'énergie d'un solide n'est pas une simple répétition n fois des niveaux d'énergie de chaque atome isolé. En réalité, il apparaît une série d'énergies admissibles qui se répartissent dans une certaine gamme d'énergie, cette gamme est appelée bande d'énergie permise. D'autres gammes restent interdites. Ainsi, si les atomes restent éloignés les uns des autres, les bandes d'énergies admises sont très étroites, mais à mesure que la distance inter-atomique diminue, ces bandes s'élargissent et le solide peut alors admettre une plus large gamme de niveaux d'énergie.

20. Nous pouvons penser, comme dans la classification périodique, que les électrons remplissent ces bandes d'énergies, toujours en respectant le principe d'exclusion de Pauli. L'énergie du dernier niveau rempli est appelée énergie du niveau de Fermi. La manière dont se place ce dernier niveau rempli va déterminer la nature du matériau (métal ou isolant). Si le niveau de Fermi se place dans une bande d'énergie admise, il sera très facile d'exciter les électrons, le matériau sera donc un métal. Si au contraire le niveau de Fermi se place dans une bande d'énergie interdite, il n'est pas possible d'exciter les électrons en appliquant une petite différence de potentiel, nous avons donc affaire à un isolant. Enfin, un semi-conducteur est un isolant dont la bande d'énergie interdite (« gap », en anglais), est suffisamment petite pour que l'on puisse exciter un nombre significatif de porteurs de charge simplement avec la température ambiante.
Nous voyons donc que l'explication de propriétés aussi courantes des matériaux repose sur les principes généraux de la mécanique quantique.

21. Ainsi, dans un solide constitué d'atomes dont la couche électronique externe est complète, les électrons ne peuvent sauter d'un atome à l'autre sans violer le principe d'exclusion de Pauli. Ce solide sera alors un isolant.

22-23. En réalité, les semi-conducteurs intrinsèques (les matériaux qui sont des semi-conducteurs à l'état brut) ne sont pas les plus utiles. On cherche en fait à contrôler le nombre de porteurs de charge que l'on va induire dans le matériau. Pour cela, il faut créer des états d'énergies très proches des bandes permises (bande de conduction ou bande de Valence). On introduit à ces fins des impuretés dans le semi-conducteur (du bore dans du silicium, par exemple) pour fournir ces porteurs de charges. Si on fournit des électrons qui sont des porteurs de charges négatifs, on parlera de dopage N. Si les porteurs de charges sont des trous créés dans la bande de Valence, on parlera de dopage P.

24. L'assemblage de deux semi-conducteurs P et N est la brique de base de toute l'électronique moderne, celle qui permet de construire des transistors (aux innombrables applications : amplificateurs, interrupteurs, portes logiques, etc.). Le bond technologique dû à l'invention du transistor dans les années 1950 repose donc sur tout l'édifice théorique et expérimental de la mécanique quantique. L'invention du transistor a valu le prix Nobel en 1956 à Brattain, Shockley et Bardeen. Le premier transistor mesurait quelques centimètres, désormais la concentration dans un circuit intégré atteint plusieurs millions de transistors au cm². Il existe même une célèbre loi empirique, proposée par Moore, qui observe que le nombre de transistors que l'on peut placer sur un microprocesseur de surface donnée double tous les 18 mois. Cette loi est assez bien vérifiée en pratique depuis 50 ans !

25. En mécanique quantique, il existe un balancier permanent entre théorie et expérience. La technologie peut induire de nouvelles découvertes fondamentales, et réciproquement.
Ainsi, le transistor à effet de champ permet de créer à l'interface entre un oxyde et un semi-conducteur un gaz d'électrons bidimensionnel, qui a conduit à la découverte de « l'effet Hall quantifié ».

26. Cette nappe d'électron présente une propriété remarquable : lorsqu'on applique un champ magnétique perpendiculaire à sa surface, la chute de potentiel dans la direction transverse au courant se trouve quantifiée de manière très précise. Ce phénomène est appelé effet Hall entier (Klaus von Klitzing, prix Nobel 1985) ou effet Hall fractionnaire (Robert Laughlin, Horst Stormer et Daniel Tsui, prix Nobel 1998).

27. L'explication de ces phénomènes fait appel à des concepts fondamentaux de la physique moderne comme le phénomène de localisation d'Anderson, qui explique l'effet des impuretés sur la propagation des électrons dans un solide. Nous voyons donc encore une fois cette interaction permanente entre technologie et science fondamentale.

La supraconductivité :

28. Il existe donc des métaux, des isolants, des semi-conducteurs. Il existe un phénomène encore plus extraordinaire : la supraconductivité. Il s'agit de la manifestation d'un phénomène quantique à l'échelle macroscopique : dans un métal « normal », la résistance tend vers une valeur finie non nulle lorsque la température tend vers 0 alors que dans un métal supraconducteur, la résistance s'annule en dessous d'une certaine température dite critique. Les perspectives technologiques offertes par la supraconductivité paraissent donc évidentes car il serait alors possible de transporter un courant sans aucune dissipation d'énergie. Le problème est de contrôler la qualité des matériaux utilisés, et il serait évidemment merveilleux de pouvoir réaliser ce phénomène à température ambiante...

29. La supraconductivité a été découverte par Kammerlingh Onnes en 1911 quand il refroidit des métaux avec de l'hélium liquide à une température d'environ 4 degrés Kelvin.

30. Ce phénomène ne fut expliqué que 46 ans plus tard, car il fallait tout l'édifice de la mécanique quantique pour réellement le comprendre. Nous devons cette explication théorique à Bardeen, Cooper et Schieffer à la fin des années 1950.

31. Dans un métal, il y a une source naturelle d'attraction entre les électrons. On peut imaginer que chaque électron déforme légèrement le réseau cristallin et y attire un autre électron pour former ce que l'on nomme une paire de Cooper. Ces paires peuvent échapper au principe d'exclusion de Pauli car elles ont un Spin 0. Elles se comportent alors comme des bosons et non plus comme des fermions, et s'écroulent dans un même état d'énergie pour former un état collectif. Le matériau a un comportement analogue à l'état de superfluide de l'hélium 4. Toutes ces paires de Cooper sont donc décrites par une unique fonction d'onde, c'est un état quantique macroscopique. Il existe donc de nombreuses propriétés qui révèlent cet état quantique à l'échelle du matériau.

32. A la fin des années 1950, la théorie de la supraconductivité est enfin comprise et le but est maintenant d'augmenter la température critique. Une véritable course est alors lancée, mais celle-ci n'eut pas que des succès. Alors que en 1911 Kammerlingh Onnes observait la supraconductivité du mercure à une température de 4K, à la fin des années 80, nous en étions encore à environ 30K. En 1986, cette température critique fait un bond considérable et se trouve aujourd'hui aux alentours des 140K. La température de l'azote liquide étant bien inférieure à ces 140K, il est désormais moins coûteux d'obtenir des supraconducteurs.

33. Ces supraconducteurs possèdent des propriétés étonnantes. Par exemple, un champ magnétique ne peut pénétrer à l'intérieur d'un matériau supraconducteur. Ceci permet de faire léviter un morceau de supraconducteur en présence d'un champ magnétique !

34. Cette « lévitation magnétique » offre de nouvelles perspectives : il est par exemple possible de faire léviter un train au dessus de ses rails, il faut alors très peu d'énergie pour propulser ce train à de grandes vitesses. Un prototype japonais a ainsi atteint des vitesses de plus de 500km/h.
Les supraconducteurs permettent de créer des champs magnétiques à la fois très intenses et contrôlés, et servent donc pour l'imagerie par résonance magnétique (IRM). Ceci offre bien sûr de nouvelles possibilités en imagerie médicale.
Les supraconducteurs peuvent être également utilisés pour créer de nouveaux outils pour les physiciens : dans le nouvel accélérateur de particules au CERN à Genève, les aimants sont des supraconducteurs.

35. L'année 1986 voit une véritable révolution dans le domaine de la supraconductivité. Bednorz et Muller découvrent en effet une nouvelle famille de matériaux supraconducteurs qui sont des oxydes de cuivre dopés. En l'absence de dopage, ces matériaux sont des isolants non-conventionnels, dans lesquels le niveau de Fermi semble être dans une bande permise (isolants de Mott). La température critique de ces supraconducteurs est bien plus élevée que dans les supraconducteurs conventionnels : le record est aujourd'hui de 138 degrés Kelvin pour un composé à base de mercure. C'est une très grande surprise scientifique que la découverte de ces nouveaux matériaux, il y a près de vingt ans.

Des matériaux aux propriétés étonnantes :

36. Ces sont donc des isolants d'un nouveau type, dits de Mott. Ces matériaux sont isolants non pas parce que leur couche extérieure est pleine mais parce que les électrons voulant sauter d'un atome à l'autre par effet tunnel se repoussent mutuellement.

37. La compréhension de la physique de ces matériaux étonnants est un grand enjeu pour les physiciens depuis une vingtaine d'années. En particulier, leur état métallique demeure très mystérieux et ne fait à ce jour pas le consensus de la communauté scientifique.

38. Il est également possible de fabriquer des métaux à partir de molécules organiques, nous obtenons alors des « plastiques métalliques » pouvant également devenir supraconducteurs en dessous d'une certaine température (découverte par Denis Jérome et son équipe à Orsay en 1981). Le diagramme de phase des supraconducteurs organiques est au moins voire plus compliqué que celui des oxydes métalliques.

39. Actuellement, des recherches sont menées sur des alliages ternaire, et quaternaires qui semblent offrir encore de nouvelles propriétés. Par exemple, les oxydes de manganèse ont une magnétorésistance colossale, c'est-à-dire que leur résistance varie beaucoup en présence d'un champ magnétique. Cette particularité pourrait être utilisée dans le domaine de l'électronique de Spin, où on utilise le Spin des électrons, en plus de leur charge pour contrôler les courants électriques. Les oxydes de Cobalt, quant à eux, présentent la propriété intéressante d'être des thermoélectriques (i.e capables de produire un courant électrique sous l'action d'un gradient de température).
Il existe donc de très nombreux défis dans ce domaine, ils sont de plusieurs types. D'abord, l'élaboration de structures peut permettre de découvrir de nouveaux matériaux aux nouvelles propriétés qui soulèvent l'espoir de nouvelles applications.
Mais il existe aussi des défis théoriques : est il possible de prédire les propriétés d'un matériau à partir des lois fondamentales ? Des progrès importants ont été réalisés durant la seconde partie du XXème siècle et ont valu à Walter Kohn le prix Nobel de chimie. Cependant, ces méthodes ne sont pas suffisantes pour prédire la physique de tous les matériaux, en particulier de ceux présentant de fortes corrélations entre électrons. Les puissances conjuguées de la physique fondamentale et calculatoire des ordinateurs doivent être mise à service de ce défi. Par ailleurs, de nouveaux phénomènes apparaissent dans ces matériaux qui amèneront certainement des progrès en physique fondamentale.
La chimie, la physique et l'ingénierie des matériaux et de leurs propriétés électroniques semblent donc avoir de beaux jours devant eux !

 

DOCUMENT       canal-u.tv     LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon