ecole de musique piano
     
menu
 
 
 
 
 
 

L'UTILISATION DES RAYONS X POUR L'ANALYSE DE LA MATIÈRE

 

 

 

 

 

 

 

L'UTILISATION DES RAYONS X POUR L'ANALYSE DE LA MATIÈRE

Le rayonnement synchrotron est devenu en quelques années la principale source de rayons X. Il est émis par des particules chargées (électrons) qui sont accélérées par des champs magnétiques dans des machines construites au départ pour étudier la physique des particules. Ce rayonnement est très intense et sa brillance peut atteindre 1011 fois celle d'un tube à rayons X. Ceci a ouvert des possibilités complètement nouvelles dans de nombreux domaines : possibilité de faire des images sur des objets qui absorbent très peu les rayons X et de faire des hologrammes, possibilité d'étudier la structure de la matière dans des conditions extrêmes de pression et de température qui règnent au centre de la terre, résolution de structures biologiques complexes tels que le ribosome, le nucléosome ou des virus de grande taille, étape importante pour la réalisation de nouveaux médicaments. Le but de cette conférence est d'illustrer ces possibilités par des résultats récents.

Texte de la 229e conférence de l’Université de tous les savoirs donnée le 16 août 2000.
Utilisation des rayons x (rayonnement synchrotron) pour l’analyse de la matière par Yves Petroff

AVANT PROPOS
Les rayons X ont été découverts à la fin du XIXe siècle par Wilhelm Conrad Röntgen, qui obtint pour la première fois la radiographie d’une main. En quelques semaines, l’expérience fut reproduite dans des centaines de laboratoires à travers le monde. Les tubes à rayons X étaient faciles à construire et peu coûteux : on en installa des centaines, y compris dans les foires et chez les marchands de chaussures. Il fallut attendre plusieurs années avant que l’on ne se rende compte de certains effets néfastes. Pendant quelque temps, les applications des rayons X furent essentiellement médicales, qu’il s’agisse d’imagerie ou de thérapie. Quant à leur origine, durant toute cette période, elle demeura fort controversée.
En 1912, Max von Laue prédit que les rayons X devraient être diffractés par des cristaux. Grâce à ce procédé, il devenait en effet possible d’obtenir la position des atomes dans les solides, donc d’en décrire la structure. La première structure résolue fut celle du chlorure de sodium par Sir William Henry Bragg et son fils.
La fin des années 40 fut marquée par trois événements importants :
- On observa pour la première fois le rayonnement émis par des électrons relativistes (dont la vitesse est proche de celle de la lumière), accélérés au moyen de champs magnétiques dans des machines (synchrotrons) construites pour l’étude de la physique des particules élémentaires. Ce rayonnement fut appelé rayonnement synchrotron.
- À peu près à la même époque, on commença à observer les rayons X provenant de l’espace, grâce à des expériences faites à bord de fusées au-dessus de l’atmosphère terrestre. L’information arrivant du cosmos provient des ondes électromagnétiques émises, réfléchies ou diffusées par les corps célestes. Malheureusement, l’atmosphère qui règne autour de la Terre arrête la plus grande partie de ces rayonnements sauf la partie visible du spectre (0,7-0,4 μm), l’infrarouge ainsi que les ondes radio (de quelques millimètres à 15m). L’astrophysique X est donc une science récente, qui a dû attendre l’avènement des fusées et des satellites pour se développer ; en effet, la détection des rayons X ne peut se faire qu’à 100 km au-dessus de la surface de la Terre. La première mesure fut faite en 1949, par le groupe de H. Friedman, du Naval Research Laboratory de Washington, à bord d’une fusée V2 récupérée à la fin de la Seconde Guerre mondiale. L’émission détectée par Friedman se révéla très faible et cela découragea de nombreux scientifiques. R. Giaconni décida de persévérer dans cette voie et, après deux tentatives malheureuses, obtint des résultats remarquables qui ouvrirent l’ère moderne de l’astrophysique X. Dans les années qui suivirent, de nombreuses sources X intenses furent découvertes : Taurus X-1 dans la nébuleuse du Crabe, Cygnus X-1 ainsi que les premières sources extragalactiques (M87, Centaurus A, 3C273 ...). Depuis le premier satellite d’étude des rayons X (Uhuru, lancé en 1970), une nouvelle mission a lieu tous les trois ou quatre ans. La moisson au cours de ces années a été extraordinairement riche puisque le satellite Rosat a répertorié plus de cent vingt mille sources de rayonnement X ! Tous ces résultats donnèrent lieu à un foisonnement de travaux théoriques. Les sources de rayons X dans le cosmos peuvent avoir des origines variées. Il peut s’agir de sources thermiques (gaz ou matière portés à des températures élevées). On sait que tout objet chauffé émet des ondes électromagnétiques. Le Soleil, qui a une température de 5000 à 6000 K à la surface, émet dans le visible ; mais la couronne solaire (106K à 107K) est également une source intense de rayons X. Cela peut être aussi du rayonnement synchrotron, du bremsstrahlung ou des transitions atomiques des éléments.

- Page 1 -
- Enfin, on commença à déterminer, grâce aux rayonnements X, les premières structures de protéines, systèmes biologiques complexes formés de plusieurs dizaines de milliers d’atomes.
RAYONNEMENT SYNCHROTRON
On appelle rayonnement synchrotron l’émission d’ondes électromagnétiques (donc de rayons X) par des particules chargées accélérées à des vitesses voisines de celle de la lumière. Les propriétés de ce rayonnement ont été calculées pour la première fois en 1944 en Union soviétique et indépendamment aux Etats-Unis en 1945. Il a été observé pour la première fois dans le visible sur une petite machine de 70 MeV au laboratoire de la General Electric en 1947.

Lorsqu’une particule chargée (un électron, un positron ou un proton) est accélérée ou décélérée, elle émet des ondes électromagnétiques. Ce mécanisme existe dans le cosmos (nébuleuse du Crabe, ceintures de Jupiter) ou bien sur terre dans des accélérateurs circulaires (appelés souvent anneaux de stockage) construits pour l’étude de la physique des particules.

Les premiers machines avaient des circonférences de quelques mètres et des énergies de quelques millions d’électronvolts (MeV). Le collisionneur actuel du Conseil Européen pour la Recherche Nucléaire (CERN), le LEP, a 27 km de circonférence et l’énergie des électrons et des positrons y est de 50 milliards d’électronvolts (GeV).
Dans de telles machines, le rayonnement synchrotron est produit lorsque les électrons sont accélérés par des aimants dipolaires, qui permettent aux électrons d’avoir une trajectoire circulaire. L’énergie des électrons dépend du domaine spectral que l’on veut obtenir : pour travailler dans l’ultraviolet et les rayons X mous (100 eV-300 eV) une énergie d’électrons entre 800 MeV et 1,5 GeV est suffisante. Si on a besoin de rayons X durs (10-150 keV), l’énergie des électrons doit atteindre 6 GeV. Il est évident que la taille de l’anneau dépend fortement de l’énergie des électrons : une machine de 1 à 2 GeV aura 100 à 250m de circonférence, une machine de 6 à 8 GeV, 850 à 1400 m.
Découvert en 1947, le rayonnement synchrotron mit plus de vingt ans avant d’être réellement exploité en tant que source de rayons X en URSS, au Japon, aux Etats-Unis, en Italie, en France, en Allemagne et en Grande-Bretagne. Contrairement à ce que l’on pourrait penser, la communauté scientifique est très conservatrice !
Les machines de la première génération avaient été élaborées pour l’étude de la physique des particules et on y avait installé en parasite quelques expériences servant à extraire les rayons X et l’ultraviolet.
Par la suite, c’est-à-dire dans les années 80, des machines de la deuxième génération furent construites uniquement pour l’exploitation du rayonnement synchrotron. On s’aperçut alors que l’on pouvait gagner des facteurs mille ou dix mille en intensité de rayons X en installant des structures magnétiques appelées éléments d’insertion (on onduleurs), en général de 3 ou 4 m de long, et le plus souvent constitués d’aimants permanents.
La troisième génération de sources de rayonnement synchrotron est fondée essentiellement sur ces éléments d’insertion.
Le rayonnement émis dans ces machines est polychromatique et va des ondes millimétriques aux rayons X durs. Avec des éléments d’insertion, il est émis dans un cône extrêmement étroit, assez voisin de celui d’un laser. Dans une machine de 6 GeV, la divergence des rayons X est très faible (de l’ordre de 0,1 milliradian), aussi faible que celle d’un rayon laser [voir figure 1]. Le rayonnement est pulsé, puisque les électrons sont groupés en paquets de quelques centimètres, ce qui donne des « bouffées » régulières de 50 à 200 picosecondes (ps) suivant la machine.

- Page 2 -
La brillance est le facteur essentiel qui caractérise la qualité optique de la source. Elle peut être dix milliards de fois supérieure à celle d’un tube à rayons X. Depuis le début du siècle, la brillance des sources de rayons X a beaucoup évolué (cf. figure 2). Pendant une cinquantaine d’années, elle est restée constante. Le rayonnement synchrotron lui a fait gagner un facteur 1010 (10 milliards) en trente ans. C’est une phénomène assez rare ; le seul exemple équivalent est celui du laser dans le domaine visible.

- Page 3 -
Du fait de ces propriétés exceptionnelles, et de la possibilité de réaliser une cinquantaine d’expériences autour d’un anneau de stockage, le rayonnement synchrotron, d’abord considéré comme une nuisance, aujourd’hui la source la plus intense de rayons X, est devenu très vite un outil indispensable pour la chimie, la biologie, la physique du solide, la physique des surfaces, la physique atomique et moléculaire.
Il existe aujourd’hui une cinquantaine de centres dans le monde produisant du rayonnement synchrotron.

QUELQUES EXEMPLES DE NOUVELLES POSSIBILITES OFFERTES PAR LE RAYONNEMENT SYNCHROTRON
Imagerie X
Lorsque l’on examine une radiographie du corps humain, on s’aperçoit immédiatement que l’on distingue parfaitement les os mais pas les tissus mous. La raison en est que, les os mis à part, l’eau représente 65 % du corps. L’eau, constituée d’éléments légers, l’hydrogène et l’oxygène absorbe peu les rayons X. Les os en revanche, constitués essentiellement de calcium, les absorbent fortement.
Les images en rayons X sont donc obtenues par contraste d’absorption. C’est ainsi que, si on veut visualiser les tissus mous, on doit y injecter un élément plus lourd ; par exemple, si on veut regarder les artères coronaires, on injecte dans le sang de l’iode. Existe-t- il des possibilités de voir les tissus mous, c’est-à-dire en général les objets absorbant peu les rayons X ? La réponse est oui, mais avec d’autres techniques réalisées dans le visible avec le laser, et assez voisines de l’holographie. Le problème pour élargir ces techniques aux rayons X vient du fait qu’elles nécessitent un rayonnement cohérent comme celui émis par un laser : en effet, la lumière émise par un laser possède de la cohérence spatiale, c’est-à-dire qu’elle diverge très peu, et de la cohérence temporelle, c’est-à-dire qu’elle est monochromatique. Or, il n’existe pas aujourd’hui de laser dans le domaine des rayons X.

- Page 4 -
Nous avons vu que la lumière émise par un élément d’insertion avait une divergence (cohérence spatiale) de l’ordre de 10-4 radian, assez voisine de celle d’un petit laser. La monochromatisation est facile à obtenir en mettant sur le trajet du faisceau un monochromateur. On obtient ainsi artificiellement de la lumière cohérente dans le domaine des rayons X. On pourrait, certes, faire de même avec un tube à rayons X et un monochromateur, mais le nombre de photons qui en jaillirait serait très faible et peu exploitable.
Ces nouvelles possibilités ouvrent la voie vers de nombreuses applications en métallurgie et en médecine.
L’exemple que nous allons décrire a été obtenu récemment à l’ESRF (Grenoble) par P. Cloetens et al [1].
Jusqu’à très récemment, les images en rayons X étaient obtenues par contraste d’absorption. En fait, si on a la chance d’avoir des rayons X cohérents on peut produire des images par contraste de phase. Ceci est particulièrement intéressant lorsqu’il s’agit de matériaux composés d’éléments légers (hydrogène, oxygène, carbone) qui absorbent très peu les rayons X. Nous avons représenté dans la figure 3 deux images d’une mousse de polystyrène obtenues dans des conditions différentes :
a) une image obtenue à 18 KeV, en plaçant le détecteur à 10 cm de l’objet. On n’exploite pas la cohérence et on a image normale en absorption et donc on ne voit rien puisque l’absorption est très faible
b) on va obtenir des images en déplaçant le détecteur à des distances variables entre 10 cm et 100 cm de l’objet. Les interférences entres les faisceaux directes et les faisceaux réfractés par l’objet permettent de reconstruire une image à trois dimensions avec une résolution de l’ordre de 1 μm. Cette holotomographie a été obtenue à partir de 700 images et ceci peut être fait en une heure. L’exploitation de la cohérence et une véritable révolution dans le domaine de l’imagerie X.
Expériences de rayons X sous haute pression
Les rayons X permettent également de tester les modèles de l’intérieur de la terre. Grâce à leur aide, la structure des matériaux à très haute pression peut être révélée. Par très hautes pressions, nous entendons des pressions supérieures à 100 gigapascals [GPa] (approximativement un million d’atmosphères). Ces pressions sont celles qui règnent à l'intérieur de la Terre, mais aussi dans les planètes telle que Jupiter. Reproduire ces pressions en laboratoire est donc important pour la géophysique, l'astrophysique, la science des matériaux.

- Page 5 -
En effet, l’augmentation de la pression change considérablement l’interaction entre atomes, donc les propriétés chimiques et physiques. Elle permet aussi de vérifier la validité des modèles théoriques de la matière condensée.
Comment obtient-on des pressions aussi élevées ? D’une manière relativement
simple : la pression étant une force appliquée sur une surface, pour l’augmenter, soit on accroît la force, soit on diminue la surface. C’est cette seconde possibilité que l’on exploite en général : l’échantillon à étudier est placé dans un trou aménagé dans un joint métallique et comprimé entre les pointes de deux diamants. Il s’agit de petits diamants de 0,1 à 0,4 carat (1 carat = 0,2g). Pour obtenir des pressions de l’ordre de 300 GPa, le diamètre de l’échantillon ne doit pas dépasser 20 μm, ce qui veut dire que le faisceau de rayons X pour sonder l’échantillon ne devra pas dépasser 10 μm. Les cellules sont faites en diamant à cause de la dureté de ce matériau mais aussi parce qu’il est transparent aux rayons X. Si on a besoin de chauffer le matériau, on le fait en focalisant un laser infrarouge au centre de la cellule ou par un chauffage électrique.
À basse pression, l’hydrogène cristallise dans une structure hexagonale compacte donnant lieu à un solide moléculaire isolant, les molécules d’hydrogène étant orientées au hasard. La théorie prévoit depuis longtemps qu’à haute pression, entre 100 et 300 GPa, l’hydrogène devrait présenter une phase métallique atomique dans laquelle les molécules ont cessé d’exister. Cet hydrogène métallique devrait avoir des propriétés inhabituelles : il devrait en particulier être supraconducteur (c’est-à-dire avoir une résistivité nulle) à la température ambiante.
Il est donc important de voir s’il y a des changements de structure cristalline et d’étudier la variation du volume en fonction de la pression. Ces expériences sont très difficiles pour plusieurs raisons : d’une part, l’intensité diffractée dans une expérience de rayons X varie comme le carré du nombre d’électrons ; l’hydrogène n’en a qu’un, donc jusqu’à très récemment il était impossible d’observer les raies de diffraction de l’hydrogène. D’autre part, l’hydrogène diffuse dans la plupart des matériaux. Enfin, au-delà de 35 GPa, les monocristaux d’hydrogène se fragmentent, ce qui diminue l’intensité du signal de plusieurs ordres de grandeur.
Récemment, une équipe franco-américaine [2] a réussi à faire des mesures sur des pressions atteignant 120 GPa grâce à une astuce qui permet d’éviter la fragmentation. Pour cela, on fait pousser un cristal d’hydrogène au centre d’un cristal d’hélium. A haute pression, l’hydrogène et l’hélium ne sont pas miscibles et l’hélium sert de coussin hydrostatique. Cela a permis de mesurer la variation du volume en fonction de la pression : le résultat le plus notable est que l’on observe pas la phase métallique prévue par la théorie.
Actuellement, on pense que 88% de Jupiter est formé d’hydrogène métallique. une première couche de 17 500 km est composée d’hydrogène moléculaire isolant, le reste est de l’hydrogène métallique, excepté le petit noyau central. Malheureusement, le champ magnétique de Jupiter calculé à partir de ce modèle est beaucoup plus faible que celui mesuré par une sonde envoyée il y a quelques années. Le champ magnétique de Jupiter est le plus fort de toutes les planètes et il repousse le vent de particules chargées provenant du Soleil jusqu’à cent fois son rayon (contre dix pour la Terre).
La Terre, elle, s’est formée il y a environ 4,5 milliards d’années, lorsque les objets orbitant autour du Soleil en formation entrèrent en collision et s’agrégèrent. Au fur et à mesure, la gravitation força les éléments les plus lourds à migrer vers le centre de la Terre. Depuis sa surface jusqu’au cœur, elle est formée de couches concentriques de compositions et des propriétés chimiques très différentes. La lithosphère, la couche externe de la croûte terrestre, est constituée de plaques qui se déplacent les unes par rapport aux autres à raison de plusieurs centimètres par an. Les plaques océaniques sont recouvertes d’une croûte de 7 km d’épaisseur. Froides et plus denses que la couche inférieure (le manteau), elles ont tendance à

- Page 6 -
s’enfoncer dans celui-ci à des endroits appelés zones de subduction. Les plaques continentales, plus épaisses, ne sont pas sujettes à ce phénomène. Aux frontières des plaques, il existe des zones volcaniques et des tremblements de terre. Le manteau supérieur est situé entre la lithosphère et le manteau inférieur. Son épaisseur est de l’ordre de 600 km. A 660 km à l’intérieur de la Terre, la température est de l’ordre de 1 900 K et la pression de 23 GPa. Le manteau inférieur s’étend entre 660 et 2 900 km. Il est essentiellement formé d’oxydes de fer et de magnésium ainsi que de silicates. A 2 900 km la température atteint 3 000 K et la pression est de 135 Gpa (voir figure 4). Entre 2 900 et 5 100 km se trouve le cœur extérieur, composé d’un alliage liquide fer-nickel avec 10 % d’impuretés (hydrogène, soufre, carbone, oxygène, silicium ...). Cet alliage liquide est un fluide qui se déplace de 1 km/an et est sujet à des courants électriques: par un effet dynamo, il est responsable du champ magnétique terrestre. En étudiant des roches magnétiques dont on peut mesurer avec précision l’âge, on s’est aperçu que la direction du champ magnétique terrestre avait changé de nombreuses fois depuis la création de la Terre (avec une période de quelques millions d’années). L’interface cœur liquide-manteau inférieur solide joue un rôle particulièrement important à cause des discontinuités des propriétés chimiques et physiques à cet endroit. Entre 5 100 et 6 400 km se trouve le cœur constitué de fer solide. Au centre de la Terre –6 400 km) la pression atteint 360 GPa et la température avoisine 6 000 K [3].
D’où proviennent les information sur cette composition et ces paramètres ? Essentiellement d’une seule technique : l’étude des ondes sismiques. Les ondes élastiques créées par des tremblements de terre traversent la planète avec des vitesses qui varient selon la densité, la pression et le module élastique des matériaux. Les tremblements de terre produisent des ondes longitudinales (compression) et des ondes transverses (cisaillement). Ces derniers ne se propagent pas dans les solides. Des détecteurs installés tout autour de la Terre permettent de mesurer les ondes réfléchies ou diffusées et d’obtenir le modèle actuel.
A quoi peuvent servir les rayons X ? A tester ce modèle : pour cela, on reconstitue en laboratoire les conditions de pression et de température qui règnent dans les différentes

- Page 7 -
couches de la Terre sur les mêmes matériaux. Avec des rayons X, on peut étudier la structure des matériaux et les changements de phase.
Toutefois, on ne peut pas aujourd’hui reproduire en laboratoire les conditions qui règnent au centre de la Terre (6 400 K et 360 GPa). Par contre, on a pu atteindre pour la première fois récemment 304 GPa ([5] et 1 300 K sur un échantillon de fer et étudier la structure hexagonale observée dans ces conditions. Ceci correspond à des conditions assez voisines de l’interface fer liquide-fer solide et permet de tester avec précision des modèles de l’intérieur de la Terre [5].
Détermination de Structures Biologiques
Le but de la biologie moléculaire est de comprendre les processus biologiques à partir des propriétés chimiques et physiques des macromolécules. Nous allons voir que cela nécessite la connaissance de la structure atomique à trois dimensions de ces macromolécules, ce qui n’est pas surprenant puisqu’on sait qu’en changeant la structure d’un semi-conducteur ou d’un métal (en faisant varier par exemple la température ou la pression), on change aussi ses propriétés chimiques et physiques.
Pourtant, il existe une différence fondamentale entre l’inerte et le vivant : la cellule élémentaire du silicium comporte quelques atomes, celle d’un virus plusieurs millions ! Seule la diffraction des rayons X permet de déterminer des structures aussi compliquées, et encore, à condition d’employer du rayonnement synchrotron.
Comme chaque cellule contient des millions de protéines, qui interagissent d’une manière complexe, la compréhension du fonctionnement de la cellule vivante est devenue l’un des défis majeurs de la science moderne.
La détermination de la structure des macromolécules biologiques (protéines, ribosomes, virus...) est facilitée par le fait qu’elles sont formées de séquences de sous- ensembles de petite dimension (quelques atomes) que sont les acides aminés pour les protéines et les nucléotides pour l’ADN.
Les premiers clichés de diffraction X de protéines furent obtenus à Cambridge en 1934 par le physicien anglais J.D. Bernal. Il a fallu attendre plus de vingt ans avant de pouvoir les interpréter et remonter à la structure même de ces protéines. La découverte de la structure de l’ADN en 1953 par Francis Crick et James Watson par ce procédé – et toujours à Cambridge ! – est considérée comme le point de départ de la biologie moléculaire.
Les acides aminés et les protéines
Les acides aminés sont les constituants fondamentaux des protéines : seuls vingt acides aminés sont utilisés par le vivant. Ils ont tous en commun un atome central de carbone Cα auquel est attaché un atome d’hydrogène H, un groupe aminé NH2 (N = azote), un groupe COOH, appelé groupe carboxyle, et enfin une chaîne latérale considérée comme un radical, et appelée R, différente pour chaque acide aminé et spécifiée par le code génétique.
Les acides aminés forment des chaînes grâce à des liaisons peptidiques, dont la formation requiert l’élimination de molécules d’eau : un peptide comporte quelques acides aminés, un polypeptide peut atteindre cent cinquante acides aminés.
Les chaînes sont appelées « structures primaires de protéines ». Au-delà de la structure primaire, les chaînes forment, grâce aux liaisons hydrogène entre certains acides aminés, soit des hélices α soit des feuillets β. La structure d’hélice α fut décrite en 1951 par Linus Pauling qui montra qu’elle devait être un élément de base des protéines. Cela fut vérifié quelques années plus tard par Max Ferdinand Perutz, qui découvrit la structure de l’hémoglobine, et

- Page 8 -
John Cowdery Kendrew en 1958 celle de la myoglobine, ce qui leur valut en 1962 le prix Nobel.
Mais ce n’est pas tout ! La protéine va encore changer de forme. Sous l’effet de paramètres divers dont certains demeurent encore inconnus, les feuillets β et les hélices α peuvent se replier pour former des amas globulaires : c’est la structure ternaire. L’eau joue un rôle très important dans ce repliement : en effet, les chaînes latérales hydrophobes sont tournées vers l’intérieur, créant un cœur hydrophobe et une surface hydrophile. C’est une des caractéristiques des protéines mises en évidence par Kendrew au cours de la détermination de la structure de la myoglobine. Finalement, l’association de plusieurs chaînes polypeptiques par des liaisons faibles about it à la structure quaternaire : celle-ci se compose donc d’un assemblage de structures ternaires [6].
Certaines protéines ne contiennent que des hélices α : c’est le cas par exemple des globines. D’autres sont constituées uniquement de feuillets : les enzymes (qui sont des protéines servant comme catalyseurs), les anticorps ou bien les protéines qui entourent les virus. Toutefois, de nombreuses protéines comprennent aussi bien des hélices que des feuillets.
La myoglobine et l’hémoglobine ont une importance capitale pour l’organisme : elles permettent respectivement le stockage et le transport de l’oxygène dans les muscles et le sang. Les structures des globines furent les premières structures de protéines découvertes grâce aux rayons X.
Les nucléotides et les acides nucléiques
Deux acides nucléiques jouent un rôle fondamental : l’ADN et l’ARN. L’acide désoxyribonucléique (ADN) est le constituant principal des chromosomes et le support de l’hérédité, l’acide ribonucléique (ARN) possède de nombreuses variantes et se définit comme le messager entre les gènes et les sites de synthèse des protéines.
Les acides nucléiques sont formés à partir de quelques nucléotides. Ces derniers sont constitués d’un sucre, d’une base et d’un groupe phosphate. Le sucre est soit un ribose (dans le cas de l’ARN), soit un désoxyribose (pour l’ADN).
Comme nous l’avons vu dans le cas des protéines, il existe aussi des structures primaires, secondaires et ternaires pour les nucléotides.
La structure primaire est une chaîne de nucléotides (polynucléotide). La structure secondaire est la fameuse double hélice de Watson et Crick : elle est formée de deux chaînes polynucléotiques qui s’enroulent autour d’un axe commun. Elles sont unies par des liaisons hydrogène qui existent entre les paires de bases. L’adénine (A) ne se couple qu’avec la thymine (T) par deux liaisons hydrogène ; la guanine (G) se liant avec la cytosine (C) par trois liaisons hydrogène.
C’est la séquence précise des bases dans l’ADN qui détermine l’information génétique : les différents tronçons de cette double hélice forment les gènes.
L’ADN se comporte comme un programme d’informatique qui indique à la cellule ce qu’elle doit faire.
Détermination de la structure des macromolécules
Pourquoi a-t-on besoin de connaître la structure des macromolécules ? Tout simplement parce que l’on sait aujourd’hui qu’il existe une relation entre la fonction biologique d’une macromolécule et la forme qu’elle prend dans un espace à trois dimensions : la connaissance de la structure d’un virus permet la mise au point de médicaments antiviraux : celle de la structure du ribosome est utile à la création de nouveaux antibiotiques, qui

- Page 9 -
servirons à attaquer l’appareil génétique de la bactérie ; enfin, la connaissance de la structure du nucléosome permettra un meilleur contrôle des gènes et une plus grande efficacité du génie génétique.
Pour que cette observation soit possible, deux méthodes sont disponibles. La première est la résonance magnétique nucléaire (RMN) dans le détail de laquelle nous ne pouvons entrer ici. L’avantage de la RMN vient du fait qu’elle donne des résultats en phase liquide (in vivo) : elle ne nécessite pas l’obtention de cristaux. Mais elle ne peut résoudre que des structures ayant un poids moléculaire peu élevé (30 000 daltons1).
La diffraction des rayons X est la seconde méthode, et de loin la plus utilisée. les résolutioins obtenues varient entre 1,5 et 3 Å. Elle présente l’inconvénient de nécessiter des monocristaux. La première question que l’on peut se poser et qui a fait l’objet de nombreuses controverses au début de la cristallographie des protéines est de savoir si les macromolécules conservent leurs fonctions biologiques dans la phase cristalline. La réponse est clairement positive et cela a été démonté en particulier pour les enzymes.
Une des difficultés provient du fait qu’il est très difficile de faire « pousser » des monocristaux de grandes dimensions: de plus, durant les mesures, ils doivent rester en contact avec la solution qui a servi à les faire pousser.
Au début de la cristallographie de molécules biologiques, il fallait plusieurs années pour découvrir la structure d’une protéine. Aujourd’hui, quelques heures ou quelques jours suffisent pour les cas les plus simples.
De nombreuses structures de protéines sont d’abord étudiées avec des tubes à rayons X pour « dégrossir ». Mais pour obtenir des structures à très haute résolution, pour déterminer la structure des ensembles de grandes dimensions tels que le ribosome et les virus, on doit impérativement utiliser le rayonnement synchrotron. En 1996, 70% des structures découvertes l’ont été par rayonnement synchrotron.
La cristallographie des molécules biologiques
Nous avons vu comment se forment les protéines et les virus. Nous allons aborder maintenant plusieurs exemples d’expériences qui ne pouvaient être réalisées il y a quelques années : la première consiste à étudier les modifications de la structure d’une protéine à l’échelle de quelques milliardièmes de seconde pendant une réaction biologique, la seconde est la découverte de la structure d’un virus dont la cellule unitaire contient plusieurs millions d’atomes et les deux dernières concernent des ensembles de grandes dimensions, le nucléosome et le ribosome.
Pourquoi est-il important de réaliser des expériences résolues en un milliardième de seconde ? Parce que les molécules biologiques subissent des changements structuraux extrêmement rapides pendant qu’elles assument leur fonction biologique.
On sait que la myoglobine, une protéine que l’on trouve dans les muscles, emmagasine l’oxygène pour le convertir en énergie. Comme nous l’avons vu plus haut, l’oxygène se fixe sur le fer. Lorsque Kendrew résolut la structure de la myoglobine en 1960, il se posa immédiatement la question de savoir comment la molécule d’oxygène pouvait entrer ou sortir de la myoglobine, étant donné la compacité de sa structure. sa conclusion fut que ladite structure ne pouvait être statique ; dynamique, elle « respire » grâce à des canaux qui s’ouvrent et se ferment pour permettre l’accès à l’hème. Quels sont ces canaux ? Quelle est la vitesse à laquelle la protéine répond à la dissociation de l’oxygène du fer ? On a aujourd’hui un début de réponse.
1 dalton : unité de masse égale au seizième de la masse de l’atome d’oxygène

- Page 10 -
L’expérience a été faite avec un cristal de myoglobine [7] avec du monoxyde de carbone (CO) qui se fixe plus facilement que l’oxygène. A l’instant t=0, on envoie sur le cristal une impulsion très courte d’un laser visible dont la longueur d’onde a été choisie pour casser la liaison entre le monoxyde de carbone et le fer. A un instant t=0, la molécule de CO est liée à l’atome de fer : quatre milliardièmes de seconde plus tard, la molécule de CO s’est éloignée de 4 Å et s’est retournée de 90 degrés [voir figure 5]. Elle reste dans cette configuration pendant 350 ns. Après une microseconde, la molécule de CO a quitté l’hème. On peut observer simultanément le changement de position des hélices et de certains acides aminés.

- Page 11 -
On a donc pu réaliser pour la première fois un film des changements de structure d’une protéine pendant sa fonction biologique. toutefois, pour arriver à observer les mécanismes fondamentaux, il faudrait gagner encore plusieurs ordres de grandeur en résolution temporelle, ce qui n’est pas impossible.
Structure de très gros virus
Chaque virus a sa forme propre, mais tous les virus ont des points communs. Le cœur contient un acide nucléique (ADN ou ARN). Il est entouré et protégé par une enveloppe composée d’une ou plusieurs protéines (capside), généralement identiques. Chez quelques virus, comme celui de la grippe, cet ensemble est lui-même entouré par une enveloppe riche en protéines, lipides et carbohydrates.
En 1998, une équipe d’Oxford [8] a réussi à déterminer à Grenoble la structure du virus de la langue bleue, qui atteint les ovins et n’est pas transmissible à l’homme. Ce virus est composé d’une enveloppe extérieure formée de 260 trimères. Le noyau central a un diamètre de 800 Å (voir figure 6) et un poids moléculaire de 60.106 daltons ! Il comprend 780 protéines d’une sorte et 120 d’une autre. L’information génétique se trouve en son intérieur sous la forme de dix molécules d’ARN comprenant 19 200 paires de bases. C’est la plus grosse structure de virus jamais découverte, mais ce record ne devrait pas tenir très longtemps. L’information structurelle obtenue devrait permettre la mise au point d’un médicament.
Les nucléoprotéines
Il s’agit d’ensemble de très grandes dimensions (plusieurs centaines d’angströms) formés de protéines et d’acides nucléiques et jouent un rôle fondamental dans le corps humain.

- Page 12 -
- le nucléosome : la structure élémentaire de la chromatine, consistant en deux cent paires de bases d’ADN et de deux copies de quatre histoires différentes. La structure a été résolue en 1997 par l’équipe de Richmond (Zürich) [9].
- le ribosome : c’est le composant essentiel du mécanisme de traduction du code génétique c’est-à-dire de la synthèse des protéines autrement dit la « fabrique » de protéines du corps humain.
Trois équipes américaines [10] ont réussi en 1999 à obtenir une structure avec 5 Å de résolution (à NSLS – Brookhaven et ALS – Berkeley). Des études récentes faites à l’ESRF sont proches de 2,5-3 Å.

CONCLUSION
J’ai choisi d’une manière arbitraire deux ou trois exemples pour illustrer les nouvelles possibilités du rayonnement synchrotron. J’aurais pu aussi bien montrer le développement considérable de l’étude du magnétisme, en grande partie dû à la découverte de la magnétorésistance géante [11], des études de surface en particulier en catalyse ou des structures électroniques des supra conducteurs à haute température.
Le rayonnement synchrotron est devenu aujourd’hui un outil indispensable pour l’étude de matériaux [12]. Toutefois il ne faut pas oublier que l’on résout rarement un problème de physique avec une seule technique. C’est donc un outil qu’il faut compter avec d’autres techniques : lorsqu’on étudie une surface la diffraction de surface en rayons X et la microscopie tunel amènent des informations complémentaires.

Références
P. Cloetens et al. Applied Phys. Lett. 75, 2912 (1999)
P. Loubeyre et al. Nature. 383, 702 (1996)
P. Gillet et F. Guyot. Phys. World 9, 27 (1996)
L.S. Dubrovinsky et al. Phys. Rev. Lett. 84, 1720 (2000)
A.M. Dziewonski et D.L. Anderson. Phys. Earth Planet. Inter. 25, 297 (1981)
C.I. Brändén et J. Toozl. Introduction to Protein Structure. Garland Publ. Inc. New
York – London (1991)
V. Srajer et al. Science 274, 1726 (1996)
J.M. Grimes et al. Nature, 395, 470 (1998)
K. Luger et al. Nature 389, 251 (1997)
W.M. Clemons et al. Nature 400, 833 (1999)
N. Ban et al. Nature 400, 841 (1999)
R. Cate et al. Science 285, 2095 (1999)
M.N. Baibich et al. Phys. Rev. Lett. 61, 2472 (1988)
Y. Petroff. Les rayons X (de l’Astrophysique à la Nanophysique). Collection
Dominos. Flammarion (1998).

Légendes
Figure 1 : Faisceau de rayons X émis par un élément d’insertion de l’ESRF (Grenoble). Ce faisceau est rendu visible par le fait que la forte intensité (3 Kw) ionise les molécules de l’air. On peut remarquer la faible divergence.
Figure 2 : Brillance des sources de rayons X, comparée à celle d’une lampe et du Soleil (de 1895 à 2000). La brillance est ce qui caractérise la qualité optique de la source.
- Page 13 -
Depuis le début du siècle elle a considérablement progressé, notamment grâce au rayonnement synchrotron.
Figure 3 : Image d’une mousse de polystyrène obtenue à 18 KeV
a) en absorption classique : la mousse n’est pas visible puisqu’elle n’absorbe pas les rayons X
b) l’image reconstituée en exploitant la cohérence de la lumière. La résolution (1 μm) est limitée par le détecteur.
La différence est saisissante [Ref. 1]
Figure 4 :Coupe de la terre présentant les différentes couches (lithosphère, manteau externe, manteau interne, noyau externe, noyau interne). Les pressions et les températures sont aussi indiquées. Le noyau interne comprend surtout du fer solide alors que le noyau externe est liquide. Les manteaux sont formés essentiellement de silicates [Ref. 3]
Figure 5 : Modification de la structure de la myoglobine pendant une réaction biologique. A l’instant t=0 (à gauche) on casse avec un laser visible la liaison entre le fer et l’oxyde de carbone. L’atome d’oxygène est en vert, celui de carbone en gris, l’hème est rouge.
Quatre nsec (milliardième de seconde) plus tard (au milieu) la molécule de CO s’est déplacée de 4 Å et s’est retournée de 90°. A droite, après un millionième de seconde, la molécule de CO est sortie de l’hème ([Ref. 7]
Figure 6 : Noyau du virus de la langue bleue : le diamètre est de l’ordre de 800 Å [Ref. 8]. C’est encore aujourd’hui la plus grosse structure de virus résolue par rayons X.

 

    VIDEO       CANAL  U         LIEN


 
 
 
 

Les bips, ou comment réfléchir la lumière avec des trous

 

 

 

 

 

 

 

Les bips, ou comment réfléchir la lumière avec des trous

Vincent Berger dans mensuel 290
daté septembre 1996 -

Des blocs de matière dans lesquels on a percé de minuscules trous ou galeries rigoureusement calibrés et disposés dans un ordre impeccable : tels sont les BIPs, appelés aussi cristaux photoniques. Ces étranges objets remplis de creux empêchent certaines gammes de lumière de passer. Réalisés depuis cinq ans à peine dans plusieurs laboratoires, ces parfaits miroirs pourraient bouleverser le domaine des lasers, des radards et des télécommunications optiques.
L'électron, l'agent du courant électrique, a été l'acteur majeur de la révolution technologique contemporaine. Depuis l'apparition des lasers, le photon - la particule de lumière - lui dispute la première place. Sur le plan de la théorie, les similitudes du comportement de ces deux « objets » sont connues depuis l'avènement de la physique quantique dans les années 1920. On sait qu'ils peuvent s'observer sous un double aspect : corpusculaire ou ondulatoireI,II. De plus, à bien y regarder, on constate une grande similarité mathématique entre les équations de Maxwell, qui décrivent le comportement ondulatoire des photons, et l'équation de Schrödinger, qui décrit celui des électrons.
Jetons un rapide regard sur le passé de l'électronique. Son essor considérable repose sur ces matériaux qui, sur le plan électrique, sont intermédiaires entre métal et isolant : les semi-conducteurs. Au niveau de la physique fondamentale, la compréhension de leur comportement est ancienne. Les semi-conducteurs, le silicium par exemple, sont des cristaux. Leur structure est périodique et les électrons mobiles se déplacent dans un réseau d'atomes régulièrement disposés. Dans les années 1930, les physiciens du solide ont pris conscience que cette périodicité géométrique avait une conséquence électrique : à cause de la parfaite régularité du paysage atomique, l'énergie des électrons ne peut pas prendre n'importe quelle valeur ; elle doit appartenir à certaines gammes d'énergies, séparées par des « bandes d'énergie interdites ». Une grande partie des recherches ultérieures à cette première élaboration théorique ont eu pour but de mieux contrôler ces bandes d'énergie interdites. Nul besoin d'épiloguer sur leur succès...

Peut-on tirer profit, sur un plan pratique, de l'analogie théorique électron/photon ? A la fin des années 1980, Eli Yablonovitch, chercheur aux laboratoires d'AT&T Etats-Unis, s'est posé cette questionIII : comment concevoir des matériaux où les bandes interdites ne concerneraient pas les électrons mais les photons ? A l'image des cristaux semi-conducteurs, il imagine des structures périodiques constituées par des empilements de petites billes, de cylindres ou encore de minipoutres, voire par des réseaux de minuscules galeries, etc. fig. 1. Ces nouveaux matériaux sont tout naturellement appelés des « cristaux photoniques » ou, pour faire plus court, des BIPs bande interdite photonique.
Pour comprendre plus précisément ce qu'est un BIP, faisons un détour par les miroirs. Dans leur grande majorité, les miroirs de la vie quotidienne sont constitués d'une simple couche de métal argent, aluminium déposée sur un support. Mais les miroirs de très haute qualité utilisés par les laboratoires d'optique, par exemple pour fabriquer la cavité d'un laser, sont d'une autre nature. Ils ne font pas intervenir la réflexion de la lumière sur une surface métallique. Appelés miroirs de Bragg , ils se composent d'un ensemble de couches transparentes distinctes et superposées de manière périodique voir l'encadré « Les miroirs de Bragg ». Ils réfléchissent la lumière grâce à un phénomène d'interférence constructive entre les différentes couches : l'onde lumineuse incidente est partiellement réfléchie à chaque interface entre deux couches. Du fait de la stratification périodique, les ondes ainsi réfléchies présentent un déphasage bien défini les unes par rapport aux autres. Elles interfèrent donc, de manière constructive ou destructive selon la valeur du déphasage, qui elle-même dépend de la longueur d'onde* et de l'angle d'incidence du rayon lumineux. Pour certaines longueurs d'onde et certains angles d'incidence, la structure multicouche se comporte alors comme un miroir.

Ce qui se passe dans les miroirs de Bragg est tout à fait analogue à la diffraction des rayons X par les plans d'atomes dans un cristal. C'est pourquoi ces structures portent le nom du physicien anglais William Lawrence Bragg, qui expliqua le premier les phénomènes de diffraction cristalline1. Ces empilements de couches aux propriétés optiques intéressantes sont connus depuis des décennies.
L'aventure des BIPs démarre lorsque Eli Yablonovitch propose de réaliser des miroirs de Bragg à plusieurs dimensions. L'idée consiste à généraliser le simple empilement unidimensionnel de couches, pour construire des assemblages périodiques de cylindres parallèles - on a alors un BIP bidimensionnel - ou des structures périodiques complètement tridimensionnelles : par exemple des empilements de sphères disposées selon un réseau cubique faces centrées*, ou des assemblages de poutres enchevêtrées périodiquement fig. 2.
Quelles propriétés attend-on de ces empilements ? Ces structures réfléchissent la lumière selon le même principe que les miroirs de Bragg : les ondes lumineuses renvoyées par tous les cylindres, billes ou poutres interfèrent constructivement. Cependant, à la différence des miroirs de Bragg, la lumière est réfléchie par un BIP tridimensionnel quel que soit l'angle sous lequel elle se présente sur le matériau.

L'explication est simple. Dans un cristal photonique tridimensionnel, quel que soit l'angle d'incidence sous lequel la lumière se présente, celle-ci « voit » une structure répétitive dont la période est à peu près constante. Les longueurs d'onde correspondant à cette période seront donc toujours réfléchies, et ne pourront jamais pénétrer au coeur du matériau. Voilà pourquoi on parle de bande interdite photonique : les photons dont la longueur d'onde ou l'énergie, ou la fréquence appartient à une certaine gamme sont tout simplement interdits dans le matériau2.
Les calculs montrent qu'il y a toutefois une condition à remplir pour obtenir un BIP complet, c'est-à-dire sans aucun angle de pénétration possible : il faut que le contraste d'indices rapport des indices de réfraction* optique entre l'air et le matériau soit assez important, au moins égal à 2. Sinon, les domaines de longueurs d'onde interdites ne se recouvrent plus quand l'angle varie : autrement dit, toute longueur d'onde trouvera un angle de pénétration possible.
Ces matériaux révolutionnaires permettent d'imaginer d'intéressants dispositifs. En effet, posons la question suivante : si aucun photon ne peut pénétrer à l'intérieur du BIP, que se passe-t-il si un émetteur de photons est placé au coeur même du matériau ? Le cas de figure n'est pas académique. L'équipe de Serge Haroche et Jean-Michel Raimond à l'Ecole normale supérieure, par exemple, réalise des expériences dans lesquelles des atomes excités sont placés au centre d'une cavité formée de miroirs supraconducteurs extrêmement réfléchissants. En principe, un atome excité revient spontanément à un état d'énergie plus bas en émettant un photon. La longueur d'onde du photon dépend de la différence d'énergie entre le niveau de départ et celui d'arrivée. Si les photons que l'atome est susceptible d'émettre ont une longueur d'onde en accord avec les dimensions de la cavité, ce processus d'émission peut être favorisé, sinon il est considérablement ralenti.
Pour un émetteur placé dans un BIP, des phénomènes similaires sont attendus : il se comportera comme s'il était complètement entouré de miroirs. Il sera alors possible de l'empêcher d'émettre ou, au contraire, de l'obliger à rayonner dans une direction bien précise, obtenue en aménageant une sortie dans le BIP un défaut dans la structure, ou simplement une épaisseur plus faible localement, donc plus facile à traverser2. C'est là que les applications sont passionnantes. En effet, si l'on savait réaliser une structure dans laquelle tous les photons ne peuvent être émis que dans une seule direction et nulle part ailleurs, on réaliserait le vieux rêve des fabricants de lasers à semi-conducteurs : le laser sans aucune perte, dans lequel tout électron injecté dans l'émetteur est converti en un photon utile. Les physiciens appellent un tel laser, qui présenterait un rendement idéal de 100 %, le laser sans seuil, parce qu'un tel dispositif ne nécessiterait aucun seuil de courant pour fonctionner. De telles sources de lumière laser bouleverseraient le domaine de l'optoélectronique, des télécommunications et interconnexions optiques.
Toutes ces perspectives théoriques extrêmement alléchantes étaient présentes à la fin des années 1980. Il restait à les concrétiser. Les difficultés commencèrent... Par leur principe même, les cristaux photoniques sont des matériaux de structure périodique : la période doit être de l'ordre de la moitié de la longueur d'onde l des photons que l'on veut interdire. Entre un BIP réfléchissant les micro-ondes l Å 0,1 mm à 1 cm et un autre réfléchissant la lumière visible l Å 0,4 à 0,8 mm, il y a seulement une différence d'échelle. Les deux formes peuvent être identiques, l'une étant simplement le modèle réduit de l'autre, à l'échelle de la longueur d'onde considérée.

Pour les applications que nous avons évoquées, situées plutôt dans le rouge ou le proche infrarouge, il faut être capable de réaliser des architectures dont la période vaut une fraction de micromètre. On sait le faire pour des simples miroirs de Bragg, unidimensionnels : le dépôt de couches d'épaisseur micrométrique est maîtrisé depuis fort longtemps. Mais dès qu'il s'agit d'un matériau bidimensionnel ou tridimensionnel, la structuration de la matière à ces échelles microscopiques reste un défi technologique. D'autant que l'on ne peut pas choisir n'importe quel matériau : il faut, rappelons-le, un contraste d'indice supérieur à 2 pour obtenir un BIP.
Qui fabriquera le cristal photonique réfléchissant la plus petite longueur d'onde ? Plusieurs laboratoires autour du monde se sont engagés dans une compétition serrée. Pour son premier prototype de BIP tridimensionnel, Yablonovitch a naturellement choisi des longueurs d'onde élevées, de l'ordre du centimètre. En ce qui concerne la forme du BIP, Kai-Ming Ho et ses collègues à l'université de l'Iowa avaient montré en 1990 que la structure périodique la plus favorable pour un BIP tridimensionnel est la structure cristalline du diamant3. Yablonovitch chercha donc à imiter cette structure. Le diamant, vu sous certaines directions, présente des galeries parallèles disposées selon un réseau hexagonal. Yablonovitch entreprit de creuser dans du Plexiglas un diélectrique, c'est-à-dire un matériau isolant électriquement trois jeux de galeries parallèles, mimant ainsi la structure du diamant. La longueur d'onde choisie lui permit de réaliser les galeries à l'aide d'une simple perceuse programmable fig. 1. En 1991, il obtenait pour la première fois un BIP, pour des fréquences de 14 GHz, ce qui correspond à une longueur d'onde de 2 centimètres4.
Les résultats obtenus pour ces premiers miroirs diélectriques tridimensionnels sont impressionnants. Avec une taille d'échantillon de seulement 8 périodes soit environ 8 centimètres, la « yablonovite » réfléchit presque tout le rayonnement incident : la fraction d'énergie transmise est inférieure à 1 sur 100 0004 fig. 3. Rapidement, l'équipe de l'université d'Iowa prit l'initiative et proposa une autre structure, qui copie encore la structure du diamant, mais vue sous un autre angle5. Appelée structure « tas de bois » fig. 2C, en bas, elle offre l'avantage d'être plus facile à fabriquer. En gravant ainsi des poutres de silicium par des techniques de microlithographie, ces chercheurs parvinrent à pousser les fréquences des bandes interdites jusqu'à 94 GHz, puis jusqu'à 500 GHz, ce qui correspond à une longueur d'onde d'environ 0,6 mm.
De nombreuses pistes différentes sont proposées en direction de la miniaturisation. Yablonovitch, aujourd'hui à l'université de Californie de Los Angeles, tente de fabriquer la yablonovite à partir d'un substrat d'arséniure de gallium GaAs, pour des longueurs d'onde de l'ordre du micron c'est-à-dire dans l'infrarouge. L'idée est très séduisante : le semi-conducteur GaAs est en effet le matériau roi de l'optoélectronique.
Le procédé que Yablonovitch suggère consiste à envoyer un faisceau d'ions sur le substrat recouvert par un masque d'or représentant le motif à graver6. Les ions sont stoppés par l'or et creusent le GaAs uniquement dans les zones non masquées. On dispose ainsi d'une perceuse microscopique, qui grave le motif défini par le masque d'or. Celui-ci est dessiné et déposé par des techniques usuelles en microélectronique. Pour créer les différentes galeries, trois gravures ioniques sont réalisées successivement, à différentes incidences obliques. De tels procédés de gravure de semi-conducteurs sont relativement classiques. Cependant, à cause des échelles extrêmes requises dans le cas présent les trous ont un diamètre d'une fraction de micromètre et de la complexité des galeries s'entrecroisant, la fabrication de la yablonovite à des longueurs d'onde de l'ordre du micron n'a pas encore été couronnée de succès. Quant à la structure « tas de bois », la fragilité des poutres en semi-conducteurs de dimensions réduites limite leur miniaturisation.

Mais on peut imaginer de mettre en oeuvre d'autres techniques ou des matériaux différents. Un grand nombre d'équipes tentent par exemple de réaliser un BIP simplement bidimensionnel. Cela suffit pour certaines applications et il est beaucoup plus facile de percer un réseau de trous cylindriques verticaux que l'enchevêtrement de galeries d'un BIP tridimensionnel. Le CNET-Bagneux, en collaboration avec notre équipe chez Thomson-CSF, participe à cette course vers la gravure la plus fine. Tout dernièrement, par exemple, a été réalisé un BIP bidimensionnel prévu pour des longueurs d'onde de l'ordre de 1 micromètre fig. 4.
Le problème de ce genre de procédé réside dans la gravure : dès qu'on tente de graver des cylindres d'une profondeur supérieure à quelques rayons de trous, soit la qualité de la gravure se détériore, soit les parois qui séparent les trous cylindriques se brisent. Les techniques de gravure ionique ne permettent donc pour l'instant de ne fabriquer que des BIPs peu profonds. Nous avons récemment effectué des calculs numériques montrant que la lumière s'échappe de façon trop importante dans la troisième direction. Ces structures conçues pour une longueur d'onde d'environ 1 micromètre n'ont donc pas, pour l'instant, prouvé leur qualité de BIP à part entière.

Aux laboratoires de Siemens, en Allemagne, Ulrike Gruening et ses collègues ont conçu il y a quelques mois une nouvelle technique de gravure électrochimique du silicium7. L'intérêt de cette méthode est la verticalité parfaite des trous obtenus, due au fait que la gravure s'effectue très précisément le long d'un plan cristallin du silicium. On obtient ainsi des trous « extrêmement » profonds : 75 mm fig. 5. Grâce à cette technique, l'équipe allemande a battu très récemment le record de cristal photonique constitué d'un matériau semi-conducteur, pour une longueur d'onde de 5 micromètres. On arrive maintenant très près des longueurs d'onde du proche infrarouge émises par des dispositifs semi-conducteurs, ce qui laisse envisager une intégration prochaine d'émetteurs dans des BIPs.
Le record absolu a pourtant été obtenu cette année par l'équipe de K. Inoue à l'université de l'île de Hokkaido, au Japon, avec un tout autre matériau. Leur technique consiste cette fois à former une gerbe de fibres optiques, bien rangées selon un réseau bidimensionnel. Une fois le réseau formé, il suffit simplement d'étirer l'ensemble, ce qui réduit simultanément sa dimension transverse, jusqu'au point désiré. A l'aide de ce nouveau procédé, totalement différent des autres et surprenant par sa simplicité, les chercheurs japonais ont atteint la longueur d'onde record de 2,5 micromètres8.

Les petites longueurs d'onde restent un défi pour les BIPs. Mais la nature pourrait bien offrir elle-même les objets parfaitement structurés à l'échelle microscopique que les hommes s'escriment à réaliser. Ainsi, les opales, pierres précieuses provenant en majorité d'Australie ou du Mexique, présentent à leur surface des empilements périodiques de billes de silice, d'une taille très régulière de l'ordre d'une fraction de micromètre. C'est d'ailleurs pourquoi leurs surfaces présentent de superbes irisations, dues à la diffraction de la lumière sur leur structure périodique fig. 6. Malheureusement, le contraste d'indice entre l'air et la silice est trop faible inférieur à 2 pour donner lieu à un véritable BIP, c'est-à-dire un bon miroir pour tout angle d'incidence.
D'autres matériaux, comme certains colloïdes ou polymères, présentent également une structure spontanément organisée. Par exemple, Bernard François, à l'université de Strasbourg, travaille sur des polymères qui ont le bon goût de s'assembler automatiquement en un réseau régulier tridimensionnel9. Cependant, là encore, les contrastes d'indices demeurent trop faibles pour fournir des BIPs complets. Mais des idées émergent pour pallier ces déficiences : on pourrait par exemple incorporer au polymère des colorants, des particules métalliques ou semi-conductrices, qui augmenteraient ainsi son indice de réfraction. On pourrait aussi se servir du polymère comme d'un moule, couler une céramique d'indice plus important à l'intérieur, et détruire ensuite le moule en polymère par pyrolyse. La chimie n'a donc pas dit son dernier mot.
S'il est vrai que ces structures n'ont pas encore été réalisées aux échelles sub-microniques, cela n'a pas empêché les ingénieurs de tirer rapidement profit des matériaux à bande interdite photonique. Dès l'invention de la yablonovite, miroir presque parfait fonctionnant à tout angle pour des longueurs d'onde centimétriques, les ingénieurs se sont emparés de ces nouveaux matériaux pour réaliser des supports pour antennes hyperfréquences, utilisées par les radars. L'intérêt des BIPs se trouve ici dans sa fonction première : celle d'interdire simplement aux photons rayonnés de pénétrer dans le support sur lequel est fixée l'antenne. Avec un substrat diélectrique simple, une grande partie de l'émission d'une antenne est en effet absorbée dans ce matériau. Cette énergie est perdue et le rendement de la source hyperfréquence s'en trouve affecté. Plus grave encore, si l'on désire placer plusieurs antennes émettrices sur le même substrat, les ondes émises par chacune d'entre elles vont, en passant dans le support, perturber les antennes voisines.
En utilisant un matériau à bande interdite photonique comme substrat de l'antenne, l'émission de celle-ci est entièrement dirigée vers l'extérieur, et cela sans faire de court-circuit avec l'antenne comme le ferait un simple miroir métallique10. Deux équipes américaines, celle d'Elliott Brown au MIT et celle de Rana Biswas à l'université de l'Iowa, déclarent ainsi obtenir des gains importants en terme de rendement mais également de directivité* de ces nouvelles antennes, l'une avec la yablonovite et l'autre avec la structure « tas de bois ». Ces résultats récents attendent encore confirmation. C'est d'ailleurs l'un des objectifs du GDR Groupement de recherche sur les BIPs que le CNRS vient de créer en France.
On le voit, de nombreux progrès restent à faire concernant les techniques de fabrication, ou la mise au point de BIPs adaptés au domaine visible ou proche infrarouge. Des défis théoriques subsistent aussi. Par exemple, on sait très bien calculer les propriétés des cristaux photoniques parfaits, structures infiniment étendues dans les trois directions et rigoureusement périodiques. En revanche, les BIPs de taille finie ainsi que ceux présentant des défauts restent très difficiles à modéliser. Mais il est vrai que l'aventure des matériaux à bande interdite photonique ne fait que commencer...
1 W.L. Bragg, Proc. Cambridge Phil. Soc., 17 , 43, 1913.
2 E. Yablonovitch, Phys. Rev. Lett., 58 , 2059, 1987.
3 K.M. Ho et al., Phys. Rev. Lett., 65 , 3152, 1990.
4 E. Yablonovitch et al., Phys. Rev. Lett., 67 , 2295 et 3380, 1991.
5 K.M. Ho et al., Solid State Comm., 89 , 413, 1994.
6 E. Yablonovitch, J. Opt. Soc. Am., B 10 , 283, 1993.
7 U. Gruning et al., Appl. Phys. Lett., 68 , 747, 1996.
8 K. Inoue et al., Phys. Rev. B, 53 , 1010, 1996.
9 G. Widawski et al., Nature, 369 , 387, 1994.
10 E.R. Brown et al., Appl. Phys. Lett., 64 , 3345, 1994.

NOTES
LONGUEUR D'ONDE, FRÉQUENCE, ÉNERGIE
L'énergie d'un photon est proportionnelle à sa fréquence, et inversement proportionnelle à sa longueur d'onde.

RÉSEAU CUBIQUE FACES CENTRÉES
C'est un réseau de points c onstruit par la répétition, dans les trois directions de l'espace, d'un même motif géométrique : un cube, matérialisé par ses sommets et les centres de ses faces.

INDICE DE RÉFRACTION
C'est un nombre qui caractérise les propriétés optiques d'un milieu transparent. Il v aut c / v , où c est la vitesse de la lumière dans le vide et v sa vitesse dans le matériau. L'indice de réfraction détermine en partie l'angle de réfraction d'un rayon lumineux qui pénètre dans le matériau.

DIRECTIVITÉ D'UNE ANTENNE
Propension de l'antenne à émettre son rayonnement dans une direction bien précise. Une très bonne directivité est parfois utile radar, parfois à éviter radiodiffusion.

LES MIROIRS DE BRAGG
Les miroirs de Bragg sont des successions de couches d'indices de réfraction différents, empilées les unes sur les autres de manière périodique. Ils exploitent le caractère ondulatoire de la lumière et l'interférence des ondes réfléchies par les différentes couches. Imaginons un rayon lumineux incident sur une telle structure voir le schéma ci-contre. A chaque interface séparant deux couches différentes, la lumière est en partie transmise, et en partie réfléchie. Les rayons réfléchis se propageant en sens inverse peuvent subir une autre réflexion sur une nouvelle interface et changer de sens de propagation, et ainsi de suite. Le faisceau réfléchi par l'ensemble de la structure est obtenu en ajoutant l'ensemble des ondes secondaires réfléchies, tout en prenant en compte leur phase, c'est-à-dire le chemin optique total qu'elles ont parcouru dans la structure. Autrement dit, comme dans tout phénomène d'interférence, selon le chemin parcouru par une onde secondaire, celle-ci peut augmenter ou diminuer la réflexion totale. On parle alors d'interférence constructive ou destructive. Pour une longueur d'onde donnée, si l'épaisseur des couches est telle que tous lesfaisceaux réfléchis sont en phase , l'amplitude résultante de l'onde réfléchie sera importante. On aura alors un miroir très efficace on réalise couramment de tels miroirs réfléchissant plus de 99,5 % de l'énergie lumineuse. Pour une autre longueur d'onde, la somme pourra être destructive et le coefficient de réflexion très faible. Le pouvoir réfléchissant du miroir de Bragg est donc élevé pour certaines plages de longueur d'onde seulement : on parle de résonance. On démontre que la longueur d'onde valant le double de la période de la structure est hautement réfléchie.
En conclusion, pour obtenir un miroir de Bragg réfléchissant à la longueur d'onde l, il suffit d'empiler des couches d'indices différents et d'épaisseur l/4. Pour de la lumière visible, l'épaisseur des couches est alors d'une fraction de micromètre. Remarquons qu'un faisceau ayant une incidence oblique traverse les couches sur une plus grande épaisseur ; la résonance a alors lieu pour une longueur d'onde plus longue. En conséquence, la position spectrale de la bande interdite varie avec l'angle d'incidence.
Dans un empilement de couches comme celui représenté sur la figure, il est bien sûr possible d'ajuster les épaisseurs pour réaliser la fonction contraire, c'est-à-dire une structure multicouche ayant un coefficient de réflexion nul et une transmission parfaite. C'est précisément ce moyen qui est utilisé pour les couches antireflet qu'on dépose par exemple sur les verres de lunettes.

SAVOIR
Numéro spécial « Photonic band structures », Journal of Modern Optics, 41, n°2, 1994.
C. Weisbuch et E. Burstein eds., Confined electrons and photons : new physics and applications , Plenum, 1994.
J.D. Joannopoulos et al., Photonic crystals. Molding the flow of light , Princeton University Press, 1995.
V. Berger, Matériaux à bande interdite photonique. Etat de l'art , rapport édité par la DRET, 1995.

 

DOCUMENT      larecherche        LIEN

 
 
 
 

LANGAGE - INFORMATIQUE

 

 

 

 

 

 

 

langage

Cet article fait partie du dossier consacré à l'informatique.

actères, de symboles et de règles qui permettent de les assembler, utilisé pour donner des instructions à un ordinateur.


INFORMATIQUE
Le principe d'un langage de programmation
Comme les « langages naturels » (le français, l'anglais…), les langages de programmation sont des systèmes d'expression et de communication. Mais les « phrases » utilisées par ces langages, appelées programmes, forment des textes destinés à être compris par des ordinateurs. Cependant, les langages utilisés pour communiquer avec les ordinateurs ne sont pas tous considérés comme des langages de programmation. Il s'agit seulement des langages qui, théoriquement, sont suffisamment universels pour exprimer tous les traitements possibles (algorithmes) qu'un ordinateur peut effectuer. Ne sont pas considérés comme des langages de programmation, les langages d'interrogation de bases de données, et plus généralement les langages dits « de quatrième génération » (L4G en abrégé) – langages SQL (Structured Query Language) et Java – qui permettent de réaliser de façon conviviale des applications particulières.
On peut considérer qu'un programme est un texte dépourvu de toute ambiguïté et qui doit être écrit en respectant scrupuleusement les « règles de grammaire » du langage.

Les niveaux de langage
Un programme est constitué d'instructions destinées à être exécutées par la machine. Seules les instructions qu'une machine, ou plus précisément le processeur de l'ordinateur, est capable d'interpréter directement sont celles d'un langage de nature binaire (les programmes sont des combinaisons de nombres binaires 0 et 1). Ce langage est appelé « langage machine ». C'est le langage de plus « bas niveau ». Sur les premiers ordinateurs, c'était le seul moyen d'écrire un programme. Mais, très vite est apparue la nécessité d'utiliser des langages de programmation plus évolués, de plus « haut niveau », c'est-à-dire plus proches de l'esprit humain, et cela pour deux raisons : la première raison est qu'écrire un programme en langage machine est une tâche extrêmement minutieuse et fastidieuse, ce qui entraîne un risque d'erreurs très élevé ; la deuxième raison est que chaque processeur a son propre langage machine, ce qui empêche de transporter le même programme d'un matériel à un autre.


Un programme écrit dans un langage de plus haut niveau que le langage machine ne peut pas être exécuté directement par l'ordinateur. Il doit être préalablement traduit en langage machine. Cette traduction est effectuée automatiquement par l'ordinateur lui-même. C'est un programme appelé « traducteur » qui effectue ce travail.

Les langages d'assemblage
Un premier niveau de langage au-dessus du langage machine a commencé à être utilisé dans les années 1950. Il s'agit du langage d'assemblage qui, en gros, remplace des suites de 0 et de 1 par des notations symboliques. La traduction d'un tel langage s'appelle l'assemblage. Mais ce genre de langage dépend encore de la famille d'ordinateurs pour laquelle il a été développé. De plus, il reste peu facile à lire et à comprendre et il ne convient donc pas pour écrire de gros programmes fiables.

Les langages évolués
On appelle « langages évolués » les langages de haut niveau qui non seulement sont indépendants de toute machine mais aussi sont plus faciles à lire et à comprendre parce qu'ils regroupent en une seule instruction de haut niveau des suites d'opérations élémentaires de bas niveau, par exemple additionner deux variables numériques sans se préoccuper des détails de transfert entre mémoire centrale et registres du processeur. Il y a essentiellement deux sortes de programmes traducteurs pour ce genre de langage : les compilateurs et les interpréteurs.

Le programme en langage évolué qui doit être traduit est appelé programme source. Un interpréteur traduit les instructions du programme source l'une après l'autre et les exécute au fur et à mesure. Le compilateur traduit la totalité du programme source en produisant une nouvelle version exécutable. Comme un programme est en général destiné à être exécuté de nombreuses fois, l'avantage de la compilation est que cette traduction est faite une fois pour toutes et sollicite beaucoup moins le processeur. Mais l'interprétation peut aussi avoir des avantages : d'une part, il est plus facile de produire un interpréteur qu'un compilateur et d'autre part, l'interprétation rend plus aisée la mise en place des méthodes d'aide à la mise au point des programmes.


Les langages algorithmiques/déclaratifs/objets
L'évolution des langages décrite précédemment a conduit à des langages de haut niveau qui restent liés à un style de programmation dit algorithmique ou encore impératif ou procédural. Tout se passe comme si on programmait dans le langage machine d'une machine virtuelle de très haut niveau. Par exemple, la notion de variable est une abstraction de la notion de case mémoire et l'instruction d'affectation décrit l'action fondamentale qui consiste à modifier la valeur d'une variable. De façon générale, un programme décrit une suite d'actions que la machine doit effectuer.

Quelques langages algorithmiques classiques
Parmi les langages algorithmiques classiques, on peut citer en particulier FORTRAN apparu dès 1954 et encore utilisé pour la programmation de calculs scientifiques, COBOL (1959) utilisé pour des applications de gestion, BASIC (1964). Le langage Pascal (1969) a marqué une étape dans la structuration rigoureuse des programmes et est encore largement utilisé pour l'enseignement de la programmation. Le langage Ada est particulièrement adapté à la production de très gros programmes vus comme des assemblages de « composants logiciels ». Le langage C est aussi largement utilisé, en liaison avec l'essor du système d'exploitation Unix.

Le langage déclaratif ou descriptif
Au style de programmation algorithmique, largement dominant, on peut opposer un style de programmation dit déclaratif ou encore descriptif, qui cherche à atteindre un niveau encore plus haut. Un programme est alors vu comme la définition de fonctions (on parle alors de « programmation fonctionnelle ») ou de relations (on parle alors de « programmation logique »). Le langage LISP (1959) peut être considéré comme un précurseur des langages fonctionnels. Parmi les langages fonctionnels, on peut aussi citer les différents dialectes actuels du langage ML. La famille des langages de programmation logique est composée principalement de PROLOG (1973) et de ses successeurs. Les langages fonctionnels ou logiques sont surtout utilisés pour certaines applications relevant de ce qu'on appelle « l'intelligence artificielle ».

La programmation « orientée objets »
Le style de programmation « orientée objets » constitue une autre avancée importante dans l'évolution des langages de programmation et connaît actuellement un essor considérable. L'idée fondamentale est de permettre au mieux la conception et la réutilisation de composants logiciels et, pour cela, de structurer les programmes en fonction des objets qu'ils manipulent. On peut citer en particulier Smalltalk, Eiffel, mais le langage orienté objets le plus utilisé est certainement C++, extension du langage C. Ada 95 se veut aussi une extension de Ada adaptée à la programmation objets. Le langage Java, dont la vogue actuelle est liée à des applications au World Wide Web (Internet) est aussi un langage orienté objets. Il présente l'immense avantage d'être portable, c'est-à-dire qu'un programme écrit en Java peut fonctionner sur des machines de constructeurs différents et sous plusieurs systèmes d'exploitation sans aucune modification.
Les programmes Java sont soit interprétés soit compilés. Les versions interprétées sollicitent beaucoup l'unité centrale de l'ordinateur et cela peut avoir des conséquences fâcheuses pour les temps de réponse des applications interactives.

Le parallélisme
Citons aussi, sans entrer dans les détails, le parallélisme, c'est-à-dire les techniques qui permettent d'accroître les performances d'un système grâce à l'utilisation simultanée de plusieurs processeurs. Des problèmes difficiles se posent pour exprimer le parallélisme dans des langages de programmation et pour compiler ces langages. Le langage HPF (High Performance FORTRAN ) est un exemple récent de tentative pour résoudre ces difficultés.

 

DOCUMENT   larousse.fr    LIEN

 
 
 
 

PARTICULES ÉLÉMENTAIRES

 

 

 

 

 

 

 

PARTICULES  ÉLÉMENTAIRES


Cet article fait partie du dossier consacré à la matière.
Constituant fondamental de la matière apparaissant, dans l'état actuel des connaissances, comme indivisible.

PHYSIQUE
1. Vers l'infiniment petit
De tout temps les scientifiques ont sondé la structure de la matière pour trouver unité et simplicité dans un monde qui nous frappe par sa diversité et sa complexité apparentes. N'est-il pas remarquable de découvrir que tous les objets qui nous entourent ne sont que les multiples assemblages, parfois fort complexes, d'un petit nombre de constituants fondamentaux, qui nous apparaissent aujourd'hui comme les particules élémentaires du monde ? N'est-il pas remarquable que toutes les forces que nous voyons en jeu dans la nature ne soient que les différentes manifestations d'un tout petit nombre de mécanismes fondamentaux prenant une forme particulièrement simple au niveau des particules élémentaires ?

L'atome est tout petit (environ 10–10 m). Un gramme de matière contient près d'un million de milliards de milliards d'atomes (1024). Cependant, grâce aux instruments dont ils disposent, les physiciens peuvent maintenant décrire et comprendre la structure intime des atomes.
La physique des particules se pratique auprès de grands accélérateurs. Elle requiert de plus en plus d'importantes collaborations internationales, nécessaires pour réaliser et exploiter ces machines extrêmement coûteuses ainsi que les détecteurs qui permettent d'analyser les événements observés. Ces collaborations sont des milieux particulièrement favorables à l'éclosion de nouvelles technologies. C'est comme cela qu'est né le World Wide Web au Cern de Genève (→  Internet).
La physique des particules s'efforce de découvrir les constituants fondamentaux de la matière et de comprendre leurs interactions, c'est-à-dire la façon dont ces constituants se lient entre eux pour réaliser les structures souvent très complexes et variées que nous observons dans le monde qui nous entoure.

Dans les années 1980, le pouvoir de résolution des instruments les plus performants pour étudier la structure intime de la matière atteignait le millionième de milliardième de mètre (10–15 m), autrement dit la dimension du proton et du neutron, les constituants du noyau atomique. Ce dernier est beaucoup plus petit que l'atome, car les nucléons y sont tassés les uns contre les autres. L'atome a un rayon 100 000 fois plus grand et son volume est rempli par le mouvement incessant des électrons qui entourent le noyau.=
Aujourd'hui, le pouvoir de résolution atteint le milliardième de milliardième de mètre (10–18 m), ce qui permet de sonder l’intérieur des nucléons. En effet, les protons et les neutrons sont constitués de particules appelées quarks, qui etcomptent désormais parmi les constituants fondamentaux de la matière. Il y a 18 types de quarks, qui se distinguent par leur « saveur » et leur « couleur ». Il s'agit là de nouveaux concepts pour lesquels on a préféré ces appellations imagées aux racines grecques en faveur auparavant. L'électron est aussi l'un des constituants fondamentaux de la matière. Il fait partie d'un ensemble de six particules élémentaires appelées leptons.

Les forces présentes dans la nature résultent des symétries entre quarks et entre leptons. Tout cela est résumé par le modèle standard des particules élémentaires et des interactions fondamentales. C’est une théorie quantique des champs, autrement dit une théorie à la fois quantique et relativiste. Or, maintenir la causalité dans un monde quantique et relativiste implique l'existence d'antimatière, dont la prédiction et l'observation ont constitué un grand succès. À chaque particule correspond une antiparticule de même masse mais de charge opposée. Toutefois, si le modèle standard permet de décrire l'ensemble des particules élémentaires de la matière et les interactions fondamentales qui s'exercent entre elles, il n’inclut toujours pas l'interaction gravitationnelle. Ainsi, le modèle standard n'est pas la théorie ultime de la physique.

2. Les moyens d'étude

Pour atteindre la résolution qui est nécessaire pour plonger à l'intérieur du noyau, puis à l'intérieur des nucléons, il faut des rayons gamma de très faible longueur d'onde, autrement dit de très haute énergie. On peut les obtenir par rayonnement de particules chargées, comme l'électron ou le proton, quand ils sont accélérés à des vitesses proches de celle de la lumière (3 × 108 km.s-1). On peut cependant opérer plus directement en utilisant le fait que l'électron et le proton se comportent comme des ondes aussi bien que comme des particules. Cela traduit la description quantique qu'il faut adopter au niveau des particules. La longueur d'onde associée à une particule de très haute énergie est inversement proportionnelle à son énergie : électrons et protons de hautes énergies sont donc aussi des sondes qui se comportent comme de la lumière de très petite longueur d'onde. Ce sont eux qui permettent d'observer la structure fine de la matière, avec un pouvoir de résolution d'autant meilleur que leur énergie est plus élevée.

2.1. Les accélérateurs de particules

En étudiant les résultats de collisions à très hautes énergies, on peut explorer la structure intime de la matière, reconnaître les particules élémentaires et étudier leurs propriétés. Le pouvoir de résolution est déterminé par la puissance des accélérateurs.

Le principe de l'observation reste le même que celui utilisé avec la lumière visible, en aidant l'œil avec un instrument d'optique. Un accélérateur communique une grande énergie aux particules qu'il accélère. Les plus performants sont des collisionneurs, où des faisceaux de particules sont simultanément accélérés dans des directions opposées et amenés en collisions frontales dans des zones où l'on dispose les détecteurs. Les produits des collisions étudiées sont analysés par les détecteurs qui rassemblent les données permettant de déterminer la nature et les propriétés des particules issues de la collision. Ces collisions de haute énergie engendrent en général un véritable feu d'artifice de particules nouvelles. Une partie de l'énergie de collision se transforme en matière et en antimatière.

On exprime les énergies de collision en électronvolts (eV). L'électronvolt est l'énergie acquise par un électron sous une différence de potentiel de un volt. C'est en gros l'énergie par électron fournie par une pile électrique, car c'est aussi l'ordre de grandeur de la variation d'énergie par électron impliquée dans une réaction chimique typique (1 eV = 1,6 × 10-19 J). Vers 1960, les accélérateurs permettaient d'obtenir des énergies de collision de l'ordre d'une centaine de millions d'électronvolts (100 MeV). On pouvait ainsi descendre jusqu'à 10–15 m. Aujourd'hui, les énergies de collision atteintes dépassent le millier de milliards d'électronvolts (1 000 GeV, soient 1 TeV). Le collisionneur de Fermilab, près de Chicago, aux États-Unis, permet d'atteindre des énergies de collision de 2 TeV entre proton et antiproton.

       


Mais la machine la plus puissante du monde est désormais le LHC (Large Hadron Collider), grand collisionneur de hadrons de 27 km de circonférence mis en service en septembre 2008 au Cern, près de Genève. Il a atteint une énergie de collision de 8 TeV en juillet 2012, qui a permis de découvrir une particule qui présente toutes les caractéristiques du fameux boson de Higgs. Le LHC devrait fonctionner à 7  TeV par faisceau à partir de 2015, soit une énergie de collision de 14 TeV qui permettra de confirmer définitivement la découverte du boson de Higgs et d’aller encore plus loin dans l’exploration de l’infiniment petit.
Analyser et comprendre la structure intime de la matière, c'est donc aussi comprendre la physique des hautes énergies. C'est savoir décrire et prédire ce qui se passe au cours de telles collisions.

2.2. Les détecteurs de particules
Comment parvient-on à observer les particules malgré leur taille extrêmement réduite ? On ne voit en réalité que des effets secondaires liés à leur présence et l'on déduit de l'observation de ces phénomènes le passage et les propriétés d'une ou plusieurs particules. En utilisant plusieurs phénomènes secondaires et en courbant les trajectoires des particules dans des champs magnétiques, d'autant plus facilement que les particules ont moins d'énergie, on peut connaître la nature et les propriétés des particules qui traversent un détecteur.

Les détecteurs de particules modernes (comme les détecteurs Atlas ou CMS du LHC) sont composés de couches de sous-détecteurs, chacun étant spécialisé dans un type de particules ou de propriétés. Il existe trois grands types de sous-détecteurs :
• les trajectographes, qui permettent de suivre la trajectoire des particules chargées électriquement ;
• les calorimètres, qui arrêtent une particule et en absorbent l'énergie, ce qui permet de mesurer l’énergie de la particule ;
• les identificateurs de particules, qui permettent d’identifier le type de la particule par détection du rayonnement émis par les particules chargées.
Les détecteurs sont toujours soumis à un champ magnétique, qui courbe la trajectoire des particules. À partir de la courbure de la trajectoire, les physiciens peuvent calculer l’impulsion de la particule, ce qui les aide à l’identifier. Les particules à impulsion élevée se déplacent quasiment en ligne droite, alors que celles à impulsion plus faible décrivent de petites spirales.
3. Physique des particules et cosmologie

Selon le modèle du big bang, l'Univers tel que nous l'observons est né, semble-t-il, d'une sorte de grande explosion, le « big bang », qui s'est produite il y a environ 15 milliards d'années. L'Univers est en expansion et les galaxies semblent se fuir les unes les autres avec des vitesses proportionnelles à leurs distances respectives. Sa densité et sa température n'ont cessé de décroître depuis le big bang ; aujourd'hui, elles sont toutes deux très faibles : la densité moyenne correspond à un atome par mètre cube et la température moyenne est de l'ordre 3 K (soit –270 °C).
La relativité générale nous permet de suivre l'évolution de l'Univers et de retrouver les conditions proches de celles qui ont dû exister aux premiers instants de l’Univers à partir des données actuelles. Mais le modèle se heurte à une limite, une singularité, appelée « mur de Planck », qui correspond à l’instant 10-43 s après le big bang : il est impossible de connaître ce qui s’est passé avant cet instant car les lois de la physique que nous connaissons ne sont plus applicables, la densité et la température de l’Univers étant alors infinies. Or, en physique, des quantités infinies n’ont plus grand sens… Néanmoins, de cet instant jusqu’à nos jours, le modèle permet de décrire l’évolution de l’Univers – composé cependant à 96 % de matière et d’énergie noires inconnues !
Comme la température est proportionnelle à l'énergie moyenne par particule, au début de l'Univers, ses constituants avaient des énergies colossales et, du fait de la densité extrêmement forte, ils étaient en collision constante les uns avec les autres.
La physique qui prévalait à cette époque est donc la physique des hautes énergies que l'on explore à l'aide des accélérateurs : comprendre la structure intime de la matière, c'est aussi pouvoir décrire et comprendre ce qui se passait au début de l'Univers.
Vers 1970, les spécialistes maîtrisaient la physique à des énergies de l'ordre de 100 MeV, correspondant à la température de l'Univers quand il était âgé d'un dixième de millième de seconde (10-4 s). Aujourd'hui, les progrès réalisés permettent de comprendre la physique au niveau de 1 TeV, et, donc, les phénomènes qui se déroulaient dans l'Univers un centième de milliardième de seconde après le big bang (10-11 s). Ainsi, le facteur dix mille gagné dans les énergies par particule (ou les températures) en passant de 100 MeV à 1 TeV a permis de reculer d'un facteur dix millions dans l'histoire des premiers instants de l'Univers. C'est dire combien la physique des particules et la cosmologie sont intimement liées.

4. Le modèle standard

Le modèle standard de la physique des particules est la théorie de référence qui décrit les constituants élémentaires de la matière et les interactions fondamentales auxquelles ils participent.
La description de la structure de la matière fait appel à deux familles de particules élémentaires : les quarks et les leptons. À chaque constituant de la matière est associée son antiparticule, une particule de même masse et de charge opposée (par exemple, l’antiparticule de l’électron est le positon).

4.1. Quarks et leptons
Les quarks, découverts dans les années 1960, sont les constituants des nucléons (protons et neutrons), les particules constitutives des noyaux atomiques. Ils participent à toutes les interactions. Il en existe six espèces différentes. Pour décrire leurs propriétés, on a choisi d'utiliser des noms imagés, faute d'analogie avec quoi que ce soit de connu. Ainsi, la caractéristique qui, en dehors de la charge électrique, permet de distinguer les quarks est appelée « saveur ». Les six saveurs, caractéristiques des six espèces de quarks, sont dénommées : up (u), down (d), strange (s), charm (c), bottom (b) et top (t). Par ailleurs, chaque saveur peut exister en trois variétés, qui portent les noms de « couleurs » : rouge, vert et bleu. De même que la masse permet à une particule de réagir à la gravitation et la charge électrique à la force électromagnétique, la couleur rend les quarks sensibles à l'interaction nucléaire forte, responsable de leurs associations et de la cohésion des noyaux atomiques. Cette force ne se manifeste pas au niveau macroscopique : les trois couleurs se compensent mutuellement pour former la matière globalement « incolore ».
Une autre particularité des quarks est leur confinement : il est impossible de les obtenir individuellement à l'état libre. La famille des leptons rassemble les particules insensibles à la force nucléaire forte : l'électron ; deux particules analogues à l’électron, mais plus lourdes et instables, le muon et le tauon (ou tau) ; et trois particules électriquement neutres associées aux trois précédentes, les neutrinos électronique, muonique et tauique.
Les quarks et les leptons se présentent en doublets. Il existe un doublet de quarks (u et d) auquel fait pendant un doublet de leptons (neutrino et électron). L'électron a une charge électrique (prise par convention égale à –1), contrairement au neutrino. Il y a aussi une différence d'une unité entre la charge du quark d (–1/3) et celle du quark u (+2/3). Deux quarks u et un quark d forment un proton (charge globale +1). Deux quarks d et un quark u forment un neutron (charge globale nulle). Les protons et les neutrons sont à la base de tous les noyaux atomiques. En ajoutant suffisamment d'électrons pour compenser la charge électrique du noyau, on obtient les atomes.
L'électron, le quark u et le quark d sont les constituants exclusifs de la matière ordinaire.

4.2. Création et destruction de particules
Au cours de certains processus de désintégration radioactive, un quark d peut se transformer en quark u, mais simultanément un neutrino se transforme en électron, ou un électron est créé avec un antineutrino. La charge globale est conservée.
Dans un proton, les trois quarks ont des couleurs différentes et le proton est globalement « incolore ». C'est aussi le cas d'une multitude de particules instables qui apparaissent dans les collisions de protons quand une partie de l'énergie de collision se transforme en matière et antimatière : ces particules sont des hadrons, qui peuvent être soit des baryons – formés de trois quarks, soit des mésons – formés d'un quark et d'un antiquark. Les antiquarks ont des couleurs opposées à celles des quarks qui leur correspondent.
Quand l'énergie devient matière, il se crée autant de quarks que d'antiquarks et autant de leptons que d'antileptons. La même règle s'applique lors de l'annihilation de la matière et de l'antimatière en énergie.

Les collisions de haute énergie entre quarks ou leptons font apparaître d'autres quarks et d'autres leptons. La nature répète ainsi deux fois la famille initiale en présentant deux doublets supplémentaires de quarks, auxquels sont associés deux nouveaux doublets de leptons. Le deuxième doublet renferme le quark strange (s) et le quark charm (c), le troisième le quark bottom (b) et le quark top (t). Ce dernier a longtemps échappé aux investigations par sa masse très élevée, de l'ordre de 180 fois supérieure à celle du proton. Il a été finalement découvert au Fermilab, près de Chicago (États-Unis), en 1995, après que sa masse eut été prédite à partir de résultats obtenus à l'aide du LEP (Large Electron Positron collider) du Cern, près de Genève (Suisse). Les quarks c et b sont aussi beaucoup plus lourds que les quarks u et d, mais néanmoins nettement plus légers que le quark t.
De même, le muon et son neutrino ainsi que le tauon et son neutrino constituent les deux autres doublets de leptons associés aux deux doublets précédents de quarks. Le muon est environ 200 fois plus lourd que l'électron et le tauon près de 3 000 fois plus lourd. Ces quarks et ces leptons lourds sont instables et très éphémères à l'échelle humaine. Ils se désintègrent en se transformant en quarks ou en leptons de masse inférieure. Toutefois, la manifestation des forces entre quarks et leptons ne demande que des temps extrêmement faibles par rapport à la durée de vie de ces particules. À leur échelle, les quarks et les leptons sont donc tous aussi stables les uns que les autres et peuvent tous être considérés comme des constituants fondamentaux de la matière. Si la constitution de la matière stable de l'Univers ne fait appel qu'à la première famille de ces particules, les forces qui permettent de construire la matière à partir des éléments de la première famille font, elles, appel à la présence de tous les quarks et de tous les leptons.

4.3. Les quatre forces fondamentales
Si l'on a découvert une assez grande diversité de particules, toutes les forces présentes dans la nature se ramènent en revanche à un nombre très restreint d'interactions fondamentales. D'après la mécanique quantique, pour qu'il y ait une interaction, il faut qu'au moins une particule élémentaire, un boson, soit émise, absorbée ou échangée.
Interactions auxquelles sont soumises les particules fondamentales

4.3.1. L'interaction électromagnétique
Considérons l'interaction entre deux charges électriques. Dans la description usuelle du phénomène, on dit qu'une particule chargée crée un champ électrique qui remplit tout l'espace tout en décroissant comme l'inverse du carré de la distance à la charge. Une autre particule chargée est sensible à ce champ. Cela crée une force entre les deux particules. Si ces dernières se déplacent à une certaine vitesse, il faut introduire aussi le champ magnétique. On parle donc globalement de l'interaction électromagnétique (→  électromagnétisme). En physique quantique, ce champ présente également une forme corpusculaire : c'est une superposition de photons. Le processus fondamental de l'interaction électromagnétique correspond à l'émission d'un photon par un électron et à son absorption par un autre électron. Il implique la charge mais ne la modifie pas, puisque le photon échangé n'a pas de charge. C'est la base de l'électrodynamique quantique, qui permet de calculer tous les phénomènes mettant en jeu des échanges de photons au cours desquels peuvent aussi apparaître des paires électron-positon.

4.3.2. L’interaction forte
L'interaction forte repose sur la « couleur » des quarks. Le processus fondamental est très semblable à celui rencontré en électrodynamique. Deux quarks exercent une force l'un sur l'autre, et elle est associée à l'échange d'un gluon. Le gluon distingue la couleur mais peut aussi la changer car il porte lui-même de la couleur. Ce processus est à la base de la chromodynamique quantique, qui permet de calculer les phénomènes associés à l'échange de gluons, capables de se transformer en paires de quarks et d'antiquarks. Contrairement à l’interaction électromagnétique qui porte à l’infini, l’interaction forte ne s’exerce qu’à des distances très courtes, à quelques diamètres de noyaux

4.3.3. L’interaction faible
L'interaction électromagnétique et l'interaction forte ne peuvent pas changer la « saveur ». Mais il existe une autre interaction fondamentale qui peut le faire : c'est l'interaction faible. Elle existe sous deux formes. L'une peut changer la « saveur » et la charge et correspond à l'échange d'un boson W. L'autre peut agir sans changer la « saveur » ni la charge et correspond à l'échange d'un boson Z. Les neutrinos, qui n'ont ni charge ni « couleur », ne sont sensibles qu'à l'interaction faible. L’interaction faible (également appelée force nucléaire faible), qui permet de transformer un neutron en proton ou inversement – donc de changer la composition d'un noyau –, est ainsi responsable de certains phénomènes de la radioactivité, en particulier la radioactivité bêta.
L'interaction électromagnétique et les deux formes de l'interaction faible ne sont en fait que trois aspects d'un mécanisme unique : l'interaction électrofaible. En effet, en comprenant leur mode d'action, on s'est aperçu qu'on ne pouvait pas avoir l'une sans avoir les deux autres.
Mais il a fallu du temps pour parvenir à cette découverte car, si le photon a une masse nulle, les bosons W et Z sont très lourds, atteignant chacun près de cent fois la masse du proton, dont l'énergie de masse est proche de 1 GeV. Ce sont ces grandes masses échangées qui minimisent les effets de l'interaction et lui valent le qualificatif de faible. Ce n'est qu'au cours de collisions où l'énergie est comparable à l'énergie de masse du boson W ou du boson Z que la présence de ces masses élevées devient moins importante et que les interactions électromagnétiques et faibles peuvent montrer au grand jour leur étroite parenté.

4.3.4. L’interaction gravitationnelle

C'est une force universelle, en ce sens qu'elle est subie par toutes les particules connues. Elle est de loin la plus faible des forces, elle est toujours attractive et, de plus, elle a une portée infinie. C'est grâce à ces deux dernières caractéristiques qu'elle est détectable macroscopiquement : l'addition des forces gravitationnelles qui s'exercent entre les particules de notre corps et la Terre, par exemple, produit une force appelée poids.
→ gravitation.
Au niveau des particules élémentaires, cette force devient importante seulement lorsque des énergies considérables entrent en jeu. Dans un noyau atomique, par exemple, la force d'attraction gravitationnelle entre deux protons est 1036 fois plus faible que celle de la répulsion électrostatique. C'est à partir d'une énergie de 1019 GeV (1 GeV est l'énergie cinétique qu'acquiert un électron quand il est accéléré par une différence de potentiel de 1 000 millions de volts) qu'elle devient comparable à l'interaction électromagnétique.
Ainsi, malgré le grand nombre d'acteurs en présence, les thèmes de base de leurs jeux sont donc très peu nombreux et très semblables. C'est à ce niveau que se rencontrent l'unité et la simplicité. Qui plus est, on sait aujourd'hui déduire l'existence et les propriétés des forces fondamentales des symétries que les quarks et les leptons manifestent entre eux. La présence des forces est une conséquence du fait que ces particules sont nombreuses, mais qu'on peut dans une large mesure les mettre les unes à la place des autres sans modifier la description du monde : les quarks et les leptons sont groupés en doublets de « saveur » et les quarks en triplets de « couleur ». La compréhension de la nature profonde des forces est l'un des grands succès de la physique contemporaine. C'est le domaine des théories de jauge. L'existence et la propriété des forces sont impliquées par les symétries.

4.4. Points forts et points faibles du modèle standard
Le modèle standard consiste en un ensemble d'algorithmes, appelé développement perturbatif, permettant de calculer, par approximations successives, à l'aide d'un nombre fini et fixé de paramètres déterminés expérimentalement, les probabilités des réactions des leptons et des quarks, du photon et des bosons intermédiaires en interactions électromagnétique et faible, et les probabilités des réactions des quarks et des gluons en interaction forte à grand transfert d'énergie. Ce modèle a passé avec succès tous les tests expérimentaux auxquels il a été soumis et il a permis d'anticiper de très nombreuses découvertes expérimentales décisives : les réactions d'interaction faible à courants neutres en 1973, le quark charm en 1975, le gluon en 1979, les bosons intermédiaires de l'interaction faible (bosons W+, W– et Z0) en 1983, et le quark top en 1995. Toutes ses prédictions ont été confirmées par l'expérience et ce jusqu’à la très probable découverte en 2012 du boson de Higgs, la fameuse particule permettant d’expliquer l’origine de la masse de toutes les autres particules.

La chasse au boson de Higgs


Le boson de Higgs (ou de Brout-Englert-Higgs) est la particule élémentaire dont l'existence, postulée indépendamment par Robert Brout, François Englert et Peter Higgs dans les années 1960, permet d’expliquer l’origine de la masse de toutes les autres particules. En effet, les particules n’acquièrent une masse qu’en interagissant avec un champ de force invisible (appelé champ de Higgs) par l’intermédiaire du boson de Higgs. Plus les particules interagissent avec ce champ et plus elles deviennent lourdes. Au contraire, les particules qui n’interagissent pas avec ce champ ne possèdent aucune masse (comme le photon).

Pour mettre au jour le boson de Higgs, on provoque des milliards de chocs entre protons qui se déplacent quasiment à la vitesse de la lumière et on analyse les gerbes de particules produites. La découverte de ce boson, très probablement détecté dans le LHC du Cern en 2012, validerait ainsi le modèle standard de la physique des particules. Il faudra attendre 2015 et la remise en service du LHC dont les faisceaux de particules atteindront l’énergie nominale de 7 TeV par faisceau pour conclure définitivement sur la découverte du fameux boson.

Le modèle standard comporte cependant des points faibles.En particulier, il est en échec face au traitement quantique de la gravitation.Par ailleurs, il ne fournit pas d'explication à la propriété fondamentale du confinement qui interdit aux quarks de se propager à l'état libre hors des particules dont ils sont les constituants, etc. Ce modèle doit être considéré comme une théorie susceptible d'être améliorée et approfondie, voire remplacée dans l'avenir par une théorie radicalement nouvelle.

4.5. Vers la « théorie du tout » ?
Le modèle standard permet de décrire avec précision la structure de la matière avec une résolution de 10–18 m et d'évoquer ce qui se passait au début de l'Univers, dès 10–10 seconde après le big bang.
On pense aujourd'hui que l'interaction forte et l'interaction électrofaible ne sont que deux aspects d'un phénomène unique. Ce dernier ne devrait cependant se manifester ouvertement qu'à de très grandes énergies, que l'on situe vers 1016 GeV. On verra sans doute alors apparaître au grand jour d'autres mécanismes transformant les quarks en leptons et mettant en jeu l'échange de particules, encore hypothétiques, dont la masse est de l'ordre de 1016 GeV. Ce n'est que pour des énergies de collision dépassant largement ce seuil que les différents modes d'interaction devraient apparaître sur un pied d'égalité, dévoilant ainsi explicitement leur grande unité.

De telles énergies sont encore hors de notre portée et le resteront pour longtemps. Mais c'était celles qui prévalaient théoriquement 10–38 seconde seulement après le big bang. C'est à ce moment que les quarks et les leptons sont apparus, figés pour toujours dans leur état de quark ou de lepton avec un très léger excès, déjà mentionné, de quarks par rapport aux antiquarks et de leptons par rapport aux antileptons. On explique ainsi pourquoi l'Univers contient autant de protons que d'électrons, en étant globalement neutre. C'est le domaine de la théorie de Grande Unification, encore très spéculative. Aux énergies qui nous sont accessibles, la gravitation qui s'exerce entre des particules individuelles reste tout à fait négligeable en regard des autres forces fondamentales. Mais, à des énergies de l'ordre de 1019 GeV, elle devient aussi importante qu'elles, car ses effets croissent avec l'énergie. On pense même pouvoir l'associer aux autres modes d'interaction actuels dans le cadre d'une théorie unique. Celle-ci incorporerait une formulation quantique de la gravitation qui manque encore aujourd'hui mais dont la théorie des supercordes donne déjà un aperçu. La mise au point de cette « théorie du tout » constitue l'un des grands sujets de recherche actuels de la physique. L'Univers n'était âgé que de 10–43 seconde quand l'énergie y était de l'ordre de 1019 GeV. C'est à ce moment que le temps et l'espace prirent la forme que nous leur connaissons. Nous manquons encore de concepts plus profonds pour remonter au-delà.

 

 DOCUMENT   larousse.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon