|
|
|
|
 |
|
CHAOS, IMPRÉDICTIBILITÉ, HASARD |
|
|
|
|
|
CHAOS, IMPRÉDICTIBILITÉ, HASARD
Le monde qui nous entoure paraît souvent imprévisible, plein de désordre et de hasard. Une partie de cette complexité du monde est maintenant devenue scientifiquement compréhensible grâce à la théorie du chaos déterministe. Cette théorie analyse quantitativement les limites à la prédictibilité d'une l'évolution temporelle déterministe : une faible incertitude initiale donne lieu dans certains cas à une incertitude croissante dans les prévisions, et cette incertitude devient inacceptable après un temps plus ou moins long. On comprend ainsi comment le hasard s'introduit inévitablement dans notre description du monde. L'exemple des prévisions météorologiques est à cet égard le plus frappant. Nous verrons comment les idées à ce sujet évoluent de Sénèque à Poincaré, puis nous discuterons comment le battement d'ailes du papillon de Lorenz peut affecter la météo, donnant lieu à des ouragans dévastateurs des milliers de kilomètres plus loin. Ainsi, la notion de chaos déterministe contribue non seulement à notre appréciation pratique des incertitudes du monde qui nous entoure, mais encore à la conceptualisation philosophique de ce que nous appelons cause et de ce que nous appelons hasard.
Texte de la 218e conférence de l’Université de tous les savoirs donnée le 5 août 2000.
Chaos, imprédictibilité et hasard par David Ruelle
Pour interpréter le monde qui nous entoure nous utilisons un grand nombre de concepts très divers. Certains concepts sont concrets comme vache, puceron, papillon, d’autres abstraits comme espace, temps, hasard, ou causalité. Ces concepts sont des créations humaines : leur histoire est intimement liée à celle du langage, et leur contenu peut varier d’une culture à une autre. Nous pensons que des mots comme espace, temps, hasard, causalité correspondent à des réalités fondamentales, indépendantes de la culture où nous vivons, et même indépendantes de l’existence de l’homme. Mais il faut bien admettre que les concepts abstraits que nous venons d’énumérer ont évolué au cours de l’histoire, et que cette évolution reflète un progrès dans notre compréhension de la nature des choses. Dans ce progrès, la philosophie et la science ont joué un rôle important. Dès l’Antiquité, par exemple, les gens cultivés avaient acquis une certaine idée de l’immensité de l’univers grâce aux travaux des astronomes. Des notions comme « erratique et imprévisible » ou « peu fréquent et improbable » ont sans doute une origine préhistorique ou même antérieure au langage. En effet, une bonne appréciation des risques peut aider à la survie. Ainsi si l’orage menace il est prudent de se mettre à l’abri. En général il faut se méfier des caprices des gens et de la nature, caprices qui expriment la liberté des hommes et des choses de se comporter parfois de manière aléatoire et imprévisible. Si les notions liées au hasard et au libre choix sont d’une grande aide dans la pratique, la notion de cause est aussi une conceptualisation utile : la fumée par exemple a une cause qui est le feu. De même les marées ont une cause qui est la lune : ce n’est pas tout à fait évident, mais la chose était connue des anciens, et cette connaissance pouvait être fort utile. On peut ainsi essayer de tout expliquer comme un enchaînement plus ou moins évident de causes et d’effets. On arrive de cette manière à une vision déterministe de l’univers. Si l’on y réfléchit un peu, le déterminisme, c’est-à-dire l’enchaînement bien ordonné des causes et des effets semble en contradiction avec la notion de hasard. Sénèque qui eut la charge d’éduquer le jeune Néron se penche sur le problème dans le De Providentia et dit ceci : « les phénomènes mêmes qui paraissent le plus confus et le plus irrégulier : je veux dire les pluies, les nuages, les explosions de la foudre, ..., ne se produisent pas capricieusement : ils ont aussi leurs causes. » Cette affirmation porte en germe le déterminisme scientifique, mais, il faut bien voir que son contenu est surtout idéologique. Sénèque était un amateur d’ordre, un ordre imposé par une loi éternelle et divine. Le désordre et le hasard lui répugnaient. Cependant, comme je l’ai dit, les notions liées au hasard sont utiles, pratiquement et conceptuellement, et l’on perd peut-être plus qu’on ne gagne à les évacuer pour des motifs idéologiques. On peut d’ailleurs reprocher de manière générale aux idéologies de vouloir supprimer des idées utiles, et cela s’applique encore aux idéologies modernes, dans leurs ambitions simplificatrices et leur intolérance aux fantaisies individuelles. Mais quittons maintenant le domaine idéologique pour parler de science. Et puisque le feu est la cause de la fumée, allons voir un physico-chimiste spécialiste des phénomènes de combustion. Il nous apprendra des choses fascinantes, et nous convaincra que les problèmes de combustion sont importants, complexes, et encore mal compris. En fait si l’on s’intéresse aux problèmes de causalité et de déterminisme, plutôt que de passer sa vie à étudier les problèmes de combustion, mieux vaut choisir un problème plus simple. Par exemple celui d’une pierre jetée en l’air, surtout s’il n’y a pas d’air. On peut en effet, avec une très bonne précision, décrire par des équations déterministes la trajectoire d’une pierre jetée en l’air. Si l’on connaît les conditions initiales, c’est-à-dire la position et la vitesse de la pierre à l’instant initial, on peut calculer la position et la vitesse à n’importe quel autre instant. Au lieu d’une pierre jetée en l’air nous pouvons considérer le ballet des planètes et autres corps célestes autour du soleil, ou la dynamique d’un fluide soumis à certaines forces. Dans tous ces cas l’évolution temporelle du système considéré, c’est-à-dire son mouvement, satisfait à des équations déterministes. Si l’on veut, on peut dire que les conditions initiales d’un système sont la cause de son évolution ultérieure et la déterminent complètement. Voilà qui devrait satisfaire Lucius Annaeus Seneca. Notons quand même que le concept de cause a été remplacé par celui d’évolution déterministe, ce qui n’est pas tout à fait la même chose. Par exemple, les équations de Newton qui déterminent les mouvements des planètes permettent à partir de conditions initiales données de calculer non seulement les états futurs du système solaire, mais également les états passés. On a oublié que la cause devait précéder l’effet. En fait, l’analyse scientifique du concept de cause montre qu’il s’agit d’une notion complexe et ambiguë. Cette notion nous est très utile pour vivre dans un monde complexe et ambigu, et nous ne voudrions pas nous en passer. Cependant la science préfère utiliser des concepts plus simples et moins ambigus, comme celui d’équation d'évolution déterministe. Notons d’ailleurs que l’idée de hasard semble incompatible avec la notion d’évolution déterministe tout autant qu’avec un enchaînement bien ordonné de causes et d’effets. Nous allons dans un moment revenir à ce problème. Mais avant cela je voudrais discuter une précaution verbale que j’ai prise en parlant d’équations d’évolution déterministe valables avec une très bonne précision. Si vous demandez à un physicien des équations d’évolution pour tel ou tel phénomène, il vous demandera avec quelle précision vous les voulez. Dans l’exemple de la dynamique du système solaire, suivant la précision requise, on tiendra compte ou non du ralentissement de la rotation de la terre par effet de marée, ou du déplacement du périhélie de Mercure dû à la relativité générale. Il faudra d’ailleurs bien s’arrêter quelque part : on ne peut pas tenir compte, vous en conviendrez, des déplacements de chaque vache dans sa prairie, ou de chaque puceron sur son rosier. Même si, en principe, les déplacements de la vache et du puceron perturbent quelque peu la rotation de la terre. En Bref, la physique répond aux questions qu’on lui pose avec une précision qui peut être remarquable, mais pas absolument parfaite. Et cela n’est pas sans conséquences philosophiques, comme nous le verrons plus loin. J’ai parlé des équations d’évolution déterministes qui régissent les mouvements des astres ou ceux des fluides, de l’atmosphère ou des océans par exemple. Ces équations sont dites classiques car elles ne tiennent pas compte de la mécanique quantique. En fait la mécanique quantique est une théorie plus exacte que la mécanique classique, mais plus difficile à manier, et comme les effets quantiques semblent négligeables pour les mouvements des astres, de l’atmosphère ou des océans, on utilisera dans ces cas des équations classiques. Cependant, la mécanique quantique utilise des concepts irréductibles à ceux de la mécanique classique. En particulier la mécanique quantique, contrairement à la mécanique classique, fait nécessairement référence au hasard. Dans une discussion des rapports entre hasard et déterminisme, ne faudrait-il pas par conséquent utiliser la mécanique quantique plutôt que classique ? La situation est la suivante : la physique nous propose diverses théories plus pou moins précises et dont les domaines d’application sont différents. Pour une classe donnée de phénomènes plusieurs théories sont en principe applicables, et on peut choisir celle que l’on veut : pour toute question raisonnable la réponse devrait être la même. En pratique on utilisera la théorie la plus facile à appliquer. Dans les cas qui nous intéressent, dynamique de l’atmosphère ou mouvement des planètes, il est naturel d’utiliser une théorie classique. Après quoi il sera toujours temps de vérifier que les effets quantiques ou relativistes que l’on a négligés étaient réellement négligeables. Et que somme toute les questions que l’on s’est posées étaient des questions raisonnables. Les progrès de la physique ont montré que les équations d’évolution déterministes étaient vérifiées avec une précision souvent excellente, et parfois stupéfiante. Ces équations sont notre reformulation de l’idée d’enchaînement bien ordonné de causes et d’effets. Il nous faut maintenant parler de hasard, et essayer de reformuler ce concept en termes qui permettent l’application des méthodes scientifiques. On dit qu’un événement relève du hasard s’il peut, pour autant que nous sachions, soit se produire soit ne pas se produire, et nous avons tendance à concevoir notre incertitude à ce sujet comme ontologique et fondamentale. Mais en fait l’utilité essentielle des concepts du hasard est de décrire une connaissance entachée d’incertitude, quelles que soient les origines de la connaissance et de l’incertitude. Si je dis qu’à cette heure-ci Jean Durand a une chance sur deux d’être chez lui, je fournis une information utile : cela vaut la peine d’essayer de téléphoner à son appartement. La probabilité un demi que j’attribue au fait que Jean Durand soit chez lui reflète ma connaissance de ses habitudes, mais n’a pas de caractère fondamental. En particulier, Jean Durand lui-même sait très bien s’il est chez lui ou pas. Il n’y a donc pas de paradoxe à ce que des probabilités différentes soient attribuées au même événement par différentes personnes, ou par la même personne à des moments différents. Le hasard correspond à une information incomplète, et peut avoir des origines diverses. Il y a un siècle environ, Henri Poincaré a fait une liste de sources possibles de hasard. Il mentionne par exemple qu’au casino, c’est le manque de contrôle musculaire de la personne qui met en mouvement la roulette qui justifie le caractère aléatoire de la position où elle s’arrête. Pour des raisons historiques évidentes, Poincaré ne mentionne pas la mécanique quantique comme source de hasard, mais il discute une source d’incertitude qui a été analysée en grand détail beaucoup plus tard sous le nom de chaos et que nous allons maintenant examiner. Prenons un système physique dont l’évolution temporelle est décrite par des équations déterministes. Si l’on connaît l’état du système à un instant initial, d’ailleurs arbitraire, on peut calculer son état à tout autre instant. Il n’y a aucune incertitude, aucun hasard. Mais nous avons supposé implicitement que nous connaissions l’état initial avec une totale précision. En fait, nous ne pouvons mesurer l’état initial qu’avec une précision limitée (et d’ailleurs les équations déterministes que nous utilisons ne représentent qu’approximativement l’évolution réelle du système physique qui nous occupe). Il faut donc voir comment une petite imprécision dans notre connaissance de l’état initial au temps 0 (zéro) va affecter nos prédictions sur un état ultérieur, au temps t. On s’attend à ce qu’une incertitude suffisamment petite au temps 0 donne lieu à une incertitude petite au temps t. Mais la question cruciale est de savoir comment cette incertitude va dépendre du temps t. Il se trouve que pour beaucoup de systèmes, dits chaotiques, l’incertitude (ou erreur probable) va croître rapidement, en fait exponentiellement avec le temps t. Cela veut dire que si l’on peut choisir un laps de temps T au bout duquel l’erreur est multipliée par 2, au temps 2T elle sera multipliée par 4, au temps 3T par 8, et ainsi de suite. Au temps 10T le facteur est 1024, au temps 20T plus d’un million, au temps 30T plus d’un milliard ... et tôt ou tard l’incertitude de notre prédiction cesse d’être petit pour devenir inacceptable. Le phénomène de croissance rapide des erreurs de prédiction d’un système physique, que l’on appelle chaos , introduit donc du hasard dans la description d’un système physique, même si ce système correspond à des équations d’évolution parfaitement déterministes comme celles de la dynamique des fluides ou du mouvement des astres. Voici ce que dit Henri Poincaré dans le chapitre sur le hasard de son livre Science et Méthode publiée en 1908 : « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. » Cette affirmation, Poincaré en donne un exemple emprunté à la météorologie : « Pourquoi Les météorologistes ont-ils tant de peine à prédire le temps avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien des gens trouvent tout naturel de prier pour avoir de la pluie ou du beau temps, alors qu’ils jugeraient ridicule de demander une éclipse par une prière ? Nous voyons que les grandes perturbations se produisent généralement dans les régions où l’atmosphère est en équilibre instable. Les météorologistes voient bien que cet équilibre est instable, qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de la dire ; un dixième de degré en plus ou en moins en un point quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième de degré, on aurait pu le savoir d’avance, mais les observations n’étaient ni assez serrées ni assez précises, et c’est pour cela que tout semple dû à l’intervention du hasard. » Les affirmations de Poincaré sur la météorologie dépassent, il faut bien le dire, ce que la science du début du 20-ième siècle permettait d’établie scientifiquement. Les intuitions géniales de Poincaré ont été confirmées, mais on trouverait sans peine des intuitions d’autres savants qui se sont révélées fausses. Il est donc heureux que, après avoir été oubliées, les idées de Poincaré aient été redécouvertes, étendues, et soumises à une analyse scientifique rigoureuse. Cette nouvelle période commence avec un article de Lorenz relatif à la météorologie en 1963, un article de Takens et moi-même sur la turbulence en 1971, puis une foule de travaux dans les années 70, 80, 90 qui édifient la théorie moderne du chaos. Le mot chaos lui-même apparaît dans son sens technique en 1975. Il n’est possible de donner ici qu’une vue très sommaire des aspects techniques de la théorie du chaos, mais j’insiste sur le fait que les résultats techniques sont essentiels. Ces résultats permettent de changer l’affirmation du sens commun suivant laquelle « de petites causes peuvent avoir de grands effets » en affirmations quantitatives comme celle concernant l’effet papillon dont nous parlerons dans un moment. La théorie du chaos étudie donc en détail comment une petite incertitude sur l’état initial d’une évolution temporelle déterministe peut donner lieu à une incertitude des prédictions qui croît rapidement avec le temps. On dit qu’il y a dépendance sensitive des conditions initiales. Cela veut dire que de petites causes peuvent avoir de grands effets, non seulement dans des situations exceptionnelles, mais pour toutes les conditions initiales. En résumé, le terme chaos désigne une situation où, pour n’importe quelle condition initiale, l’incertitude des prédictions croît rapidement avec le temps. Pour donner un exemple, considérons un faisceau de rayons lumineux parallèles tombant sur un miroir convexe. Après réflexion, nous avons un faisceau divergent de rayons lumineux. Si le faisceau initial était divergent, il serait encore plus divergent après réflexion. Si au lieu de rayons lumineux et de miroir nous avons une bille de billard qui rebondit élastiquement sur un obstacle convexe, la situation géométrique est la même, et on conclut qu’une petite incertitude sur la trajectoire de la bille avant le choc donne lieu à une incertitude plus grande après le choc. S’il y a plusieurs obstacles convexes que la bille heurte de façon répétée, l’incertitude croît exponentiellement, et on a une évolution temporelle chaotique. Cet exemple était connu de Poincaré, mais ce n’est que bien plus tard qu’il a été analysé de manière mathématiquement rigoureuse par Sinaï. Comme l’étude mathématique des systèmes chaotiques est d’une grande difficulté, l’étude du chaos combine en fait trois techniques : les mathématiques, les simulations sur ordinateur, et l’expérimentation (au laboratoire) ou l’observation (de l’atmosphère, des astres). Notons que les simulations sur ordinateur n’existaient pas du temps de Poincaré. Ces simulations ont joué un rôle essentiel en montrant que les systèmes déterministes tant soit peu complexes présentent fréquemment de la sensitivité aux conditions initiales. Le chaos est donc un phénomène très répandu. La météorologie fournit une application exemplaire des idées du chaos. En effet, on a de bons modèles qui décrivent la dynamique de l’atmosphère terrestre. L’étude par ordinateur de ces modèles montre qu’ils sont chaotiques. Si l’on change un peu les conditions initiales, les prédictions après quelques jours deviennent assez différentes : on a atteint la limite de la fiabilité du modèle. Bien entendu les prédictions faites avec ces modèles décollent après quelques jours de la réalité observée, et l’on comprend maintenant pourquoi : le chaos limite la prédictibilité du temps qu’il va faire. Le météorologiste Ed Lorenz, que nous avons déjà mentionné, a rendu populaire le concept de sensitivité aux conditions initiales sous le nom d’effet papillon. Dans un article grand public, il explique comment le battement des ailes d’un papillon, après quelques mois, a un tel effet sur l’atmosphère de la terre entière qu’il peut donner lieu à une tempête dévastatrice dans une contrée éloignée. Cela rappelle ce qu’écrivait Poincaré, mais paraît tellement extrême qu’on peut se demander s’il faut accorder à l’effet papillon plus qu’une valeur métaphorique. En fait, il semble bien que l’affirmation de Lorenz doit être prise au pied de la lettre. On va considérer la situation où le papillon bat des ailes comme une petite perturbation de la situation où il se tiendrait tranquille. On peut évaluer l’effet de cette petite perturbation en utilisant le caractère chaotique de la dynamique de l’atmosphère. (Rappelons que les modèles de l’atmosphère terrestre montrent une dynamique chaotique aux grandes échelles ; aux petites échelles, on a aussi du chaos à cause de la turbulence généralisée de l’air où nous baignons). La perturbation causée par le papillon va donc croître exponentiellement, c’est-à-dire très vite, et l’on peut se convaincre qu’au bout de quelques mois l’état de l’atmosphère terrestre aura changé du tout au tout. De sorte que des lieux éloignés de celui où se trouvait le papillon seront ravagés par la tempête. La prudence m’incite à prendre ici quelques précautions verbales. Il s’agit d’éviter qu’un doute sur un point de détail ne jette le discrédit sur des conclusions par ailleurs bien assurées. On peut se demander comment des perturbations aux petites dimensions (comme la dimension d’un papillon) vont se propager aux grandes dimensions (comme celle d’un ouragan). Si la propagation se fait mal ou très mal, peut-être faudra-t-il plus que quelques mois pour qu’un battement d’ailes de papillon détermine un ouragan ici ou là. Cela rendrait l’effet papillon moins intéressant. A vrai dire, la turbulence développée reste mal comprise et la conclusion de Lorenz reste donc un peu incertaine. L’image du papillon est jolie cependant, il serait dommage qu’on doive l’enterrer et, jusqu’à plus ample informé, j’y reste personnellement attaché. Quoi qu’il en soit, la circulation générale de l’atmosphère n’est pas prédictible plusieurs mois à l’avance. C’est un fait bien établi. Un ouragan peut donc se déclencher ici ou là de manière imprévue, mais cela dépendra peut-être d’incertitudes autres que les battements d’ailes d’un papillon. Si l’on y réfléchit un instant, on voit que le déclenchement d’une tempête à tel endroit et tel moment résulte d’innombrables facteurs agissant quelques mois plus tôt. Que ce soient des papillons qui battent des ailes, des chiens qui agitent la queue, des gens qui éternuent, ou tout ce qui vous plaira. La notion de cause s’est ici à ce point diluée qu’elle a perdu toute signification. Nous avons en fait perdu tout contrôle sur l’ensemble des « causes » qui, a un instant donné, concourent à ce qu’une tempête ait lieu ou n’ait pas lieu ici ou là quelques mois plus tard. Mêmes des perturbations infimes dues à la mécanique quantique, à la relativité générale, ou à l’effet gravitationnel d’un électron à la limite de l’univers observable, pourraient avoir des résultats importants au bout de quelques mois. Aurions-nous dû en tenir compte ? Il est clair qu’on n’aurait pas pu le faire. L’effet de ces perturbations infimes peut devenir important après quelques mois, mais un mur d’imprédicibilité nous interdit de le voir. Pour l’atmosphère terrestre, ce mur d’imprédicibilité est situé à quelques jours ou semaines de nous dans le futur. Je voudrais revenir brièvement à mon implication personnelle dans l’histoire du chaos. A la fin des années 60, je m’étais mis à l’étude de l’hydrodynamique, qui est la science de l’écoulement des fluides. Certains des écoulements que l’on observe sont tranquilles et réguliers, on les dit laminaires, d’autres sont agités et irréguliers, on les dit turbulents. Les explications de la turbulence que j’avais trouvées, en particulier dans un livre de Landau et Lifschitz sur l’hydrodynamique, ne me satisfaisaient pas, car elles ne tenaient pas compte d’un phénomène mathématique nouveau, dont j’avais appris l’existence dans les travaux de Smale. Quel est ce phénomène ? C’est l’abondance d’évolutions temporelles de nature étrange, avec dépendance sensitive des conditions initiales. Je m’étais alors convaincu que la turbulence devait être liée à une dynamique « étrange ». Dans un article joint avec Takens nous avons proposé que la turbulence hydrodynamique devait être représentée par des attracteurs étranges, ou chaotiques, et étudié le début de la turbulence, ou turbulence faible. Par la suite, de nombreux travaux expérimentaux ont justifié cette analyse. Cela ne résout pas le problème de la turbulence, qui reste l’un des plus difficiles de la physique théorique, mais on sait au moins que les théories « non chaotiques » jadis à l’honneur ne peuvent mener à rien. Quand le chaos est devenu à la mode, il a donné lieu à d’innombrables travaux. Certains de ces travaux développaient les aspects techniques de la théorie du chaos, et il n’est pas question d’en parler ici, d’autres analysaient diverses classes de phénomènes naturels dans l’espoir d’y trouver un comportement chaotique. C’est ainsi que j’ai proposé qu’il devait y avoir des oscillations chimiques chaotiques, ce qui effectivement a été démontré par l'expérience dans la suite. Ce fut une période féconde où, en réfléchissant un peu, on pouvait faire des découvertes d’un intérêt durable. Toutes les idées n’ont d’ailleurs pas été également bonnes. Ainsi, des essais d’application du chaos à l’économie et à la finance se sont révélés moins convaincants ; j’y reviendrai. Mais quand Wisdom et Laskar ont cherché du chaos dans la dynamique du système solaire, ils ont eu la main remarquablement heureuse. Le mouvement des astres du système solaire semble extraordinairement régulier, puisque l’on peut par le calcul prédire les éclipses, ou retrouver celles qui ont eu lieu, il y a plus de mille ans. On a donc longtemps pensé que le mouvement des planètes, et en particulier de la Terre, était exempt de chaos. On sait maintenant que c’est faux. L’orbite de la Terre est une ellipse dont les paramètres varient lentement au cours du temps, en particulier l’excentricité, c’est-à-dire l’aplatissement. En fait on a maintenant montré que la variation temporelle de l’excentricité est chaotique. Il y a donc de l’imprédicibilité dans le mouvement de la Terre. Le temps nécessaire pour que les erreurs de prédiction doublent est de l’ordre de 5 millions d’années. C’est un temps fort long par rapport à la vie humaine, mais assez court à l’échelle géologique. Le chaos que l’on a trouvé dans le système solaire n’est donc pas sans importance, et les travaux dans ce domaine se poursuivent activement, mais ce n’est pas ici le lieu d’en discuter. Les résultats accumulés depuis plusieurs décennies nous ont donné une assez bonne compréhension du rôle du chaos en météorologie, en turbulence hydrodynamique faible, dans la dynamique du système solaire, et pour quelques autres systèmes relativement simples. Qu’en est-il de la biologie, de l’économie, de la finance, ou des sciences sociales ? Il faut comprendre que les modélisations utiles dans le domaine du vivant sont assez différentes de celles qui nous satisfont pour des systèmes physiques simples. Les relations du hasard et la nécessité sont d’une autre nature. En fait le domaine du vivant est caractérisé par l’homéostasie qui maintient les organismes dans des conditions appropriées à la vie.
L’homéostasie tend par exemple à maintenir la température de notre corps dans d’étroites limites. Elle supprime les fluctuations thermiques et est donc de nature antichaotique. La correction des fluctuations apparaît aussi au niveau du comportement individuel : un projet de voyage est maintenu même si une panne de voiture ou une grève fortuites obligent à changer de moyen de transport. Il s’agit ici de processus correctifs compliqués et qu’il est difficile de représenter par des modèles dynamiques simples auxquels on pourrait appliquer les techniques de la théorie du chaos. Clairement, de petites causes peuvent avoir de grands effets dans la vie de tous les jours, mais aux mécanismes causateurs de chaos s’ajoutent des mécanismes correcteurs, et il est difficile de débrouiller la dynamique qui en résulte. Dans le domaine de l’économie, de la finance ou de l’histoire, on voit aussi que des causes minimes peuvent avoir des effets importants. Par exemple une fluctuation météorologique peut causer la sécheresse dans une région et livrer sa population à la famine. Mais des mécanismes régulateurs effaceront peut-être l’effet de la famine, et l’histoire poursuivra son cours majestueux. Peut-être, mais ce n’est pas certain. Une guerre obscure en Afghanistan a précipité la chute du colossal empire Soviétique. Cette guerre obscure a concouru avec de nombreuses autres causes obscures à miner un empire devenu plus instable qu’on ne le pensait. En fait nous vivons tous dans un monde globalement instable : la rapidité des transports, la transmission presque instantanée de l’information, la mondialisation de l’économie, tout cela améliore peut-être le fonctionnement de la société humaine, mais rend aussi cette société plus instable, et cela à l’échelle de la planète. Une maladie virale nouvelle, ou un virus informatique, ou une crise financière font sentir leurs effets partout et immédiatement. Aujourd’hui comme hier le futur individuel de chaque homme et chaque femme reste incertain. Mais jamais sans doute jusqu’à présent l’imprédictibilité du futur n’a affecté aussi globalement notre civilisation tout entière.
VIDEO CANAL U LIEN |
|
|
|
|
 |
|
L'EXPÉRIENCE DANS LES SCIENCES, MODÈLES ET SIMULATIONS |
|
|
|
|
|
L'EXPÉRIENCE DANS LES SCIENCES, MODÈLES ET SIMULATIONS
Après avoir été sous-estimée par Descartes, constructeur d'une science déductive essentiellement théorique, l'expérience, à partir de Newton, a acquis une place prépondérante, sinon autonome, dans les sciences modernes et contemporaines, au point que la vérification expérimentale est devenue un moment essentiel du " rationalisme appliqué ". Dès la seconde moitié du XIXème siècle, cependant, et notamment à partir de Maxwell, la détermination d'objets scientifiques repasse par la construction de modèles théoriques permettant d'aborder des champs nouveaux sur des bases formelles identiques. Aujourd'hui, un pas de plus est franchi puisque la simulation informatique des tests expérimentaux fait perdre son empiricité à l'expérience et tend à la réinstaller au sein du théorique. La question se pose ainsi de savoir si ce nouveau tournant nous ramène à son point de départ et quelles sont les limites de cette réintégration de l'expérience dans la pratique théorique.
L'EXPÉRIENCE DANS LES SCIENCES, MODÈLES ET SIMULATIONS
Texte de la 15ème conférence de l'Université de tous les savoirs réalisée le 15 janvier 2000 par Daniel Parrochia
L'expérience dans les sciences : modèles et simulation
"Expérience", du verbe latin "experiri", faire l'essai de, s'introduit en français au XIIIème siècle avec Jean de Meung. Le mot "Expérimenter", du bas latin "experimentare", "essai", remonte au XIVème siècle. Au début du XVIème siècle apparaît en français l'adjectif "expérimental", mais la notion même d"'expérimentation" reste absente des dictionnaires jusqu'en 1824. Et ce n'est qu'en 1865, avec l'Introduction à l'étude de la médecine expérimentale de Claude-Bernard, que le recours à l'expérience trouvera toute son extension, au moment même où l'on s'efforce de transposer la méthodologie victorieuse des sciences de la nature dans le domaine des sciences de la vie.
Inexistante dans l'Antiquité, sous-estimée par Descartes, mais prépondérante dans les sciences à partir de Newton, l'expérience devient donc, à l'époque de Claude-Bernard, un des facteurs incontournables des sciences de la nature et de la vie.
Ce moment d'acmé est en même temps un point d'inflexion. Dans la physique du XIXème siècle, la détermination d'objets scientifiques repasse par la construction de modèles théoriques permettant d'aborder des champs nouveaux sur des bases formelles identiques.
Aujourd'hui, la simulation informatique des tests expérimentaux fait perdre son empiricité à l'expérience et semble la réinstaller en partie au sein du théorique. Quelles sont donc les limites de cette réintégration ? C'est ce que nous chercherons à définir.
1. La carence expérimentale de la science dans l'Antiquité et à la l'Âge classique
Dans l'Antiquité, sous l'influence de Platon, l'expérience est dévaluée et réduite à la simple observation, contingente et dépourvue de valeur probatoire. Le Thééthète (163 c) distingue soigneusement perception et connaissance, la seconde reposant sur la mémoire et mettant en oeuvre les mécanismes de réminiscence que le Ménon avait présentés autrefois comme solidaires de la rationalité.
Aristote lui-même n'a ni l'idée d'une critique de la perception sensible ordinaire, ni le sentiment de l'importance que peut revêtir pour la science une mesure exacte. Certes, ses traités biologiques révèlent qu'il pratiquait la dissection des animaux. Et sa Physique (II, 4) comme son Traité Du Ciel (II 13 294 b 30), contiennent bien quelques expérimentations. Celles-ci restent toutefois peu nombreuses et limitées. Comme le note Jean-Marie Leblond, «Aristote ne possédait pas des instruments assez perfectionnés et assez exacts pour que le travail de laboratoire put être bien fructueux pour lui» et son «penchant très marqué pour l'observation commune l'en éloignait» [réf 1].
Force est donc de constater que les deux plus grands philosophes de l'antiquité ne connaissent en fait ni méthode expérimentale ni modèles, ni procédés de simulation.
Au XVIIe siècle, dans la perspective anti-aristotélicienne qui est celle de Descartes, le sensible est dévalorisé et la voie mathématique déductive préconisée, en vue d'une physique quantitative fondée en raison. Dans le Traité du Monde et encore au début du Traité de l'Homme, cette déduction est même présentée comme la reconstitution d'un monde fictif, analogue du vrai, et dans lequel les hommes, les corps, les choses sont des automates simplifiés simulant les hommes, corps et choses réelles. Avec cette «fable du monde», le philosophe construit donc une maquette théorique, une sorte de «modèle» (de modulus, diminutif, de modus, moule) de la réalité.
Dans cette perspective déductive, les expériences ne jouent qu'un rôle fort limité, comme le montre bien le Discours de la Méthode [réf 2] :
(1) La nécessité des expériences est proportionnelle à l'avancement des connaissances. Au commencement, les expériences sont à manipuler avec prudence, de sorte que Descartes les restreint aux intuitions immédiates et rejette les expériences plus élaborées, alléguant ici deux explications : d'une part, l'impossibilité de leur assigner une cause quand on ignore les grands principes; d'autre part, le caractère contingent et variable du contexte expérimental.
(2) Quand la connaissance progresse, les expériences, certes, deviennent nécessaires, mais elles ont surtout un rôle d'adjuvant, et servent surtout à pallier les limites de la théorie pure. Les raisons de cette fonction sont multiples :
a) La première est liée à l'écart existant entre la puissance de la déduction mathématique, qui porte sur le possible et enveloppe l'indéfini (sinon l'infini), et la réalité toujours finie et limitée du monde existant. «Lorsque j'ai voulu descendre [aux choses] les plus particulières, écrit Descartes, il s'en est tant présenté à moi de diverses que je n'ai pas cru qu'il fût possible à l'esprit humain de distinguer les formes ou espèces de corps qui sont sur la terre d'une infinité d'autres qui pourraient y être si c'eût été le vouloir de Dieu de les y mettre». Objectivement, distinguer le réel du possible suppose donc un recours aux expériences.
Mais subjectivement, la visée eudémoniste de la science oblige à privilégier, parmi les faits déductibles possibles, ceux qui nous sont utiles. Or, pour distinguer, parmi les choses possibles, celles que nous pourrons, comme dit Descartes, «rapporter à notre usage», il convient «qu'on vienne au-devant des causes par les effets, et qu'on se serve de plusieurs expériences particulières».
b) Une seconde raison rend les expériences plus nécessaires au fur et à mesure que la connaissance s'avance, qui tient, cette fois-ci, dans l'écart entre la puissance de la nature et la simplicité des principes posés en tête de la déduction. «Il faut aussi que j'avoue, écrit Descartes, que la puissance de la nature est si ample et si vaste, et que ces principes sont si simples et si généraux, que je ne remarque quasi plus aucun effet particulier que d'abord je ne connaisse qu'il peut en être déduit en plusieurs diverses façons, et que ma plus grande difficulté est d'ordinaire de trouver en laquelle de ces façons il en dépend». Ici, l'explication est combinatoire : le nombre des chemins déductifs possibles étant supérieur à celui des chemins déductifs réels, les expériences doivent intervenir. Elles sont finalement, pour Descartes, l'«expédient» qui permet de faire le départ entre des couples de chemins déductifs possibles, dont un seul est réel.
Au bilan, l'expérience, joue donc un triple rôle : combler l'écart entre le possible et le réel; séparer l'utile de l'inutile et simplifier le graphe des déductions possibles, opérant ainsi sur la chaîne déductive une sorte de «stabilisation sélective». La théorie, virtuellement hésitante et bifurcante, est alors restreinte à certaines voies déductives privilégiées.
Cette méthodologie devait rencontrer de nombreux problèmes. Maupertuis, au siècle suivant, en démontra les inconséquences (l'impossible hypothèse des tourbillons). Mais Newton devait ruiner l'édifice cartésien déjà fortement ébranlé par les critiques de Leibniz, Malebranche ou Huygens Une science fondée sur les faits expérimentaux et non plus sur des principes abstraits allait se substituer à la déduction cartésienne. Que devient alors la notion d'expérience une fois ce grand retournement opéré ?
2. Vers le modèle et la simulation
Dès la fin du XVIIème siècle, sous l'influence de la philosophie empiriste de Locke, qui réhabilite la sensation et en fait la condition de toute nos idées, la synthèse géométrique cesse d'être l'idéal de tout savoir et la forme de la connaissance abandonne le paradigme hypothético-déductif pour une démarche analytique et génétique, associationniste et combinatoire. La mécanique newtonienne se déploie dans ce contexte où il n'est plus question de «feindre des hypothèses» et où les faits, mathématisés, deviennent rois. Au début du livre III des Principes mathématiques de la philosophie naturelle [réf 3], Newton énonce quatre règles qui constituent, jusqu'au XIXème siècle, la base de la méthode expérimentale en physique. Ces règles trahissent une opposition totale à Descartes :
1° «Les causes de ce qui est naturel ne doivent pas être admises en nombre supérieur à celui des causes vraies ou de celles qui suffisent à expliquer les phénomènes de ce qui est naturel.» On ne doit donc pas avoir plus de principes explicatifs qu'il n'est nécessaire. C'est la fin d'une conception où le possible était plus puissant que le réel.
2° Il faut, en second lieu, «assigner les mêmes causes aux effets naturels du même genre». Autrement dit, impossibilité de rapporter les mêmes effets à des séries causales différentes. La théorie ne peut pas, et ne doit pas, contenir de bifurcation.
3° Les corps sur lesquels on expérimente, sont un sous-ensemble témoin suffisamment invariant pour servir de base inductive : «Les qualités des corps qui ne peuvent être ni augmentées ni diminuées, et qui appartiennent à tous les corps sur lesquels on peut faire des expériences doivent être considérées comme les qualités de tous les corps en général».
Newton, qui étend prudemment les enseignements de l'expérience, en ne cessant pas de s'appuyer sur les faits, précise cependant «que l'on ne doit pas forger des rêveries à l'encontre du déroulement des expériences» [réf 4]. En toute circonstance, il préfère s'appuyer sur les faits les plus avérés : ainsi, à propos des corps, il tablera sur la notion de force d'inertie plutôt que sur la notion d'impénétrabilité, beaucoup plus vague.
4° La règle IV précise le sens expérimental de sa méthodologie : les propositions réunies par induction à partir des phénomènes doivent être tenues pour vraies tant que des hypothèses contraires ne leur font pas obstacle, ou tant que d'autres phénomènes ne viennent pas les rendre plus précises ou les affranchir des exceptions qu'elles pourraient contenir.
Ainsi, une proposition ne devient générale et ne se précise que par induction, et toujours parce que les phénomènes le permettent. L'expérience, comme observation et comme observation provoquée, c'est-à-dire comme expérimentation, devient la règle suprême de la philosophie naturelle.
Quest-ce qui a alors amené la science à infléchir à nouveau la méthode expérimentale dans les deux directions anticipées par Descartes : la construction de modèles et la mise en place de procédés de simulation ?
1) Au début du XIXème siècle, la mécanique newtonienne s'est complexifiée et décrit désormais des «systèmes» physiques.
La notion de système s'est introduite en physique à travers l'étude des forces et de l'équilibre [réf 5], et, comme un système physique va devoir être décrit par un système d'équations mathématiques, la notion de modèle n'est pas loin. A l'époque, la physique s'ouvre en outre à des domaines nouveaux non mécaniques (électrostatique, thermodynamique, électromagnétisme) qu'elle explore à partir des méthodes de la science connue, autrement dit de la mécanique. La mécanique, elle-même systémique, devient ainsi un réservoir de modèles, aussi bien de montages pratiques que de modèles théoriques.
La notion de modèle comme norme abstraite se développe alors en physique. Le modèle est ici un intermédiaire à qui les physiciens délèguent la fonction de connaissance, de réduction de l'encore-énigmatique à du déjà-connu, notamment en présence d'un champ d'études dont l'accès est difficilement praticable [réf.6].
Cette fonction de délégation du modèle le fait apparaître comme un instrument d'intelligibilité dont la fonction est triple :
a) Dans un monde complexe et déployé dans des régions hétérogènes et sur des échelles très différentes, le modèle, bien adapté à un niveau d'expérience particulier, permet encore d'intégrer les niveaux inférieurs.
b) Réalisant une économie (puisqu'il transpose une même méthodologie sur un autre champ), il abrège la science en l'augmentant et permet ainsi de faire plus avec moins.
c) Ramenant le nouveau à l'ancien, il justifie l'exportation des méthodes connues dans des champs inconnus.
2) Dès la seconde moitié du XIXème siècle, la méthode expérimentale sinstalle en biologie et en médecine.
Claude-Bernard, avec son Introduction à l'étude de la médecine expérimentale, est le grand théoricien de cette extension. Mais sa définition de la méthode expérimentale est restrictive : pour lui, celle-ci «ne fait pas autre chose que porter un jugement sur les faits qui nous entourent, à l'aide d'un criterium qui n'est lui-même qu'un autre fait, disposé de façon à contrôler le jugement et à donner l'expérience» [réf 7]. Or, faire éclater l'expérience en faits simples et penser qu'on peut juger d'un fait au moyen d'un autre fait va s'avérer insuffisant. De plus, le constat reste le premier moment de la méthode préconisée par Claude-Bernard même s'il précise, par ailleurs, que l'expérience scientifique n'est pas une observation passive mais provoquée, et insiste à juste titre sur l'art du raisonnement expérimental. En fait, dans le mouvement cyclique qui caractérise sa méthode, le constat est bien à la source de l'idée à partir de laquelle pourra s'instituer le raisonnement et se mettre en place des expériences, lesquelles seront à leur tour sources de nouvelles idées et inductrices d'un nouveau cycle. Or le fait constaté, pour Claude-Bernard, reste un fait granulaire : non seulement la méthode scientifique exige un «morcellement du domaine expérimental» [réf 8] mais elle est de part en part analytique et aboutit volontairement à la dissociation des phénomènes. «A l'aide de l'expérience, nous analysons, nous dissocions ces phénomènes afin de les réduire à des relations et à des conditions de plus en plus simples» [réf 9]. D'où, deux conséquences :
(1) Les progrès de la connaissance seront toujours dus à des décisions élémentaires heuristiques, à caractère discret : «Le choix heureux d'un animal, écrit Claude-Bernard, un instrument construit d'une certaine façon, l'emploi d'un réactif au lieu d'un autre, suffisent souvent pour résoudre les questions générales les plus élevées».
(2) Le privilège de l'analyse et l'élémentarité des faits, qui renvoient au fond encore à une épistémologie cartésienne, interdit la saisie des relations dialectiques entre les phénomènes : «de ce qui précède, note Claude-Bernard à là fin de son introduction sur le raisonnement expérimental, il résulte que, si un phénomène se présentait dans une expérience, avec une apparence tellement contradictoire qu'il ne se rattachât pas d'une manière nécessaire à des conditions d'existence déterminées, la raison devrait repousser le fait comme un fait non scientifique» [réf 10].
Mais là, Claude-Bernard théoricien de la méthode expérimentale est en retard sur Claude-Bernard praticien de la physiologie, théoricien des mécanismes de régulation et fondateur de la notion de milieu intérieur. Critiquant l'anatomie, dans ses Leçons de physiologie expérimentale appliquées à la médecine (Paris 1856, tome 2, 6), il notait déjà l'impossibilité de déduire d'un examen anatomique d'autres connaissances d'ordre fonctionnel que celles qu'on y avait importées : or parmi les connaissances importées par les anatomistes, il notait la présence de modèles concrets : «quand on a dit, par simple comparaison, écrivait-il, que la vessie devait être un réservoir servant à contenir des liquides, que les artères et les veines étaient des canaux destinés à conduire des fluides, que les os et les articulations faisaient office de charpente, de charnières, de levier, etc.», «on a rapproché des formes analogues et l'on a induit des usages semblables». Canguilhem, qui cite ce texte dans ses Etudes d'histoire des sciences [réf 11] constate pourtant que le mot «modèle», ici, n'est pas utilisé.
Mais ce que Claude-Bernard théoricien néglige va s'avérer de plus en plus nécessaire pour comprendre les mécanismes de régulation qu'il a lui-même mis en évidence comme expérimentateur. Au fur et à mesure que la biologie et la médecine progresseront, le caractère interrelié des phénomènes de la vie imposera la prise en compte de faits complexes, et parfois en eux-mêmes apparemment contradictoires ou, en tout cas, antagonistes. Dès lors, ce n'est plus simplement de modèles concrets, iconiques et analogiques dont on va avoir besoin. Ce sera, comme en physique, d'authentiques modèles mathématiques.
Avec la cybernétique de N. Wiener, puis la théorie des systèmes de Bertalanffy, ce genre d'approche va se développer, et la biologie, à différents niveaux, en fera grand usage.
Au niveau cellulaire, Monod, Jacob et Lwoff ont pu décrire les phénomènes métaboliques en supposant l'existence d'un mécanisme cybernétique impliquant l'action conjointe d'un inducteur et d'un répresseur [réf 12].
Au plan des mécanismes hormonaux, de même, des modèles ont pu être proposés pour expliquer les régulations croisées et les actions conjointes d'axes hormonaux antagonistes comme les axes anté- et post-hypophysaires, des actions stimulantes de l'axe défaillant existant conjointement à des actions inhibitrices de l'axe prédominant [réf 13].
Dans ces deux exemples, des situations dialectiques complexes ne deviennent intelligibles que par une modélisation.
Enfin, à un niveau beaucoup plus général, la pensée écologique depuis les années 1930, avec l'introduction des notions de système écologique et de réseau trophique, a imposé la construction de modèles pour saisir les réalités naturelles complexes et interreliées, notamment les comportements des vivants en relation avec leur milieu biotique et abiotiques [réf 14].
La modélisation s'est donc imposée en biologie, en médecine, et en écologie, à l'encontre des idées de Claude-Bernard.
3. Les rapports entre modélisation et simulation
Si modéliser, c'est déléguer la fonction de connaissance afin de représenter la réalité de façon à la fois économique et fiable, encore faut-il s'assurer que le modèle conserve un lien avec l'expérience. C'est la tâche de la simulation, notion aux connotations jadis négatives, et que Platon, dans la République (VI, 51le) réservait à un type de savoir dégradé, celui des images, plus bas degré de la réalité selon lui. A travers Gracian, Diderot, puis Nietzsche, s'opère progressivement un renversement qui réhabilite l'artifice et permet de faire aujourd'hui, l'«éloge de la simulation», cette capacité à reproduire numériquement et à générer de façon figurative et imagée des situations, des séquences, des processus identiques aux processus réels.
1) Modélisation et simulation
Selon Etienne Guyon [réf 15], modélisation et simulation restent des démarches distinctes. La modélisation, vu ses outils, garde plus de latitude par rapport au réel que la simulation. Les conditions du mimétisme absolu ne sont pas respectées puisque le modèle opère une simplification du phénomène, ne retenant que les variables les plus caractéristiques. Ceci constitue une approximation, mais qui suffit souvent pour réussir.
En regard de cette modélisation, la simulation semble une approche plus coûteuse, puisqu'elle invite à conserver tous les paramètres du problème initial. Ainsi, selon E. Guyon, le simulateur de vol ou de conduite place-t-il le pilote dans des conditions tout à fait semblables à celle qu'il aura à affronter dans la réalité. Mais ce sentiment est trompeur car le simulateur est un modèle réduit, une simplification de la réalité, restreinte à un poste de pilotage monté sur un système de venins hydrauliques.
La simulation présuppose donc la modélisation : elle joue sur le fait que, du point de vue de la représentation humaine, le même effet peut être produit de différentes façons, et notamment d'une manière plus économique que d'une autre.
Par conséquent, les deux méthodes doivent être jugées plus complémentaires qu'opposées.
2) Fonction de la simulation.
La simulation permet d'effectuer des tests et d'expérimenter sans danger, mais aussi, dans certaines branches de la physique appliquée, de pallier les déficiences de la théorie. Ainsi, en météorologie, où il n'est pas possible de connaître théoriquement le comportement de l'atmosphère (système dynamique évolutif sensible aux conditions initiales), à moyen ou long terme, on a recours à la modélisation et à la simulation. Des programmes de calculs résolvent les équations de façon approchée mais théoriquement aussi précise que l'on veut. A partir de la connaissance de l'état de l'atmosphère à un instant donné, on peut théoriquement calculer l'évolution de cette atmosphère, et faire des prévisions. Cette approche permet en outre l'expérimentation, le modèle numérique devenant un laboratoire virtuel dans lequel on peut tester des hypothèses. Par exemple, on y fait varier certain paramètre (quantité d'énergie solaire reçue, vitesse de rotation de la terre...) pour en étudier les conséquences sur le climat. Ces modèles numériques permettent en outre d'affiner la prévision à court terme en injectant périodiquement dans le modèle de nouvelles valeurs de mesure, en coefficientant ces dernières de telle manière qu'elles aient un poids plus important que les mesures plus anciennes et aboutissent à des prévisions plus fiables.
Même si la météorologie reste une science où les modèles sont encore approximatifs, les progrès de la couverture satellitaire et des différentes méthodes numériques et informatiques permettent aux météorologues de préciser les conditions initiales et de limiter l'impact du chaos déterministe et de la turbulence. D'incessants progrès ont été faits depuis les premiers modèles, qui datent des années 1950.
Nous pourrions évoquer encore bien des exemples où modélisation et simulation vont de pair, par exemple dans les sciences humaines. Lévi-Strauss, dans La Pensée Sauvage, avait déjà souligné l'importance de la notion de «modèle réduit», à propos de la pensée mythique qui propose une sorte de métaphore du monde. On est passé rapidement de la métaphore au modèle dans des disciplines comme l'analyse spatiale en géographie ou encore la dynamique économique, qui sont des secteurs dans lesquels la modélisation et la simulation se sont énormément développées.
3) Caractère créatif de ce couple modélisation-simulation
L'intelligence artificielle (I.A.) servira ici dexemple. Se proposant au départ de comprendre la nature de l'intelligence, les chercheurs ont dû se limiter à reconstituer des comportements intelligents (et une reconstitution n'est pas une explication). Le plus souvent, ils se sont même bornés à faire faire à un ordinateur des tâches pour lesquelles l'homme est encore aujourd'hui le meilleur. Il y a un triple affaiblissement du projet initial puisque c'est avouer que non seulement on ne connaîtra pas la nature de l'intelligence, non seulement le simulacre ne renversera pas le modèle et la copie, mais la copie restera une copie imparfaite et qui n'égalera pas le modèle humain. Cette évolution, qui sonne une sorte de retour à Platon et va donc d'une modélisation impossible à une simulation imparfaite, aurait pu à bon droit passer pour une régression aliénante. Or, selon Philippe Quéau, ce chemin apparaît au contraire libérateur :
(1) La nécessité où l'on se trouve, en I.A. comme d'ailleurs souvent en physique, de faire d'abord fonctionner le modèle pour tester sa cohérence interne avant de le valider, amène parfois à le nourrir de données arbitraires. Or cet éloignement de l'expérience réelle porte en lui une créativité potentielle. Dans cette expérimentation inédite, le modèle, suivant des trajectoires éventuellement imprévues, devient susceptible de potentialités nouvelles entraînant au delà du connu.
(2) Alors que le modèle, comme réduction, opérait une certaine forme de condensation de l'expérience, «la simulation, écrit Philippe Quéau, nécessite le déplacement, le remaniement, l'ordonnancement du modèle» [réf 16]. Ces mots de condensation et de déplacement sont ceux par lesquels Freud a décrit la logique de l'inconscient, qui est aussi celle du rêve. Philippe Quéau en déduit que le simulateur, qui condense et réduit, produit donc un rêve formel, libéré des contraintes de l'expérience sensorielle qui en fournit ordinairement les matériaux.
Une des applications bien connues est la synthèse d'image, où la création de mondes virtuels, de flores ou de faunes inventées mais mathématiquement crédibles - toute une «vie artificielle» -, semble plonger le réel dans un univers beaucoup plus riche dont il n'apparaît plus que comme l'un des possibles. Le modèle, qui condense le réel, débouche, grâce au simulateur, sur une amplification théorique de celui-ci.
Cette conclusion n'admet-elle aucune limite ?
S'il est vrai que la simulation informatique fait perdre son empiricité à l'expérience et tend à la réinstaller au sein du théorique, la question se pose de savoir si ce nouveau tournant nous ramène ou non au point de départ. Bachelard nous avait appris que le rationalisme devait s'appliquer. Mais la modélisation et la simulation semblent faire l'économie d'une application réelle. Le rationalisme devient-il fantasmé ?
Certes, la modélisation-simulation, comme condensation et déplacement, opère une amplification de l'expérience, qui fait de cette extension virtuelle du réel, comme le montre Gilles-Gaston. Granger [réf. 17], un réel reformulé et enrichi, ce qu'on pourrait appeler un surréel. Ce «surréalisme» de la science contemporaine n'est d'ailleurs que le pendant du surrationalisme des grandes théorie scientifiques du XXème siècle. Expérience et applications y sont moins réfutées que réduites à un support minimum, le symbolique remplaçant économiquement le matériel.
Mais une telle réduction-substitution n'est pas sans risque. D'abord, il convient de ne confondre ni les objets et leurs images, ni les simulations et la réalité : la simulation d'un incendie ne brûle personne, les aléas de «la vie sur l'écran» n'engendrent aucune souffrance. Les erreurs qu'on peut commettre avec ces outils, tout comme la difficulté de leur validation, nous rappellent leurs limites. Certaines simulations numériques comme les simulations des explosions nucléaires, qui remplacent apparemment avantageusement ces dernières, n'excluent pas des expériences réelles coûteuses. En outre, on peut encore s'interroger sur les dangers de la virtualisation. La virtualisation des explosions nucléaires a tendance à banaliser la bombe. Il n'est pas sûr qu'on y gagne beaucoup.
Toutes les simulations ne font pas encourir les mêmes dangers. Mais l'expérience scientifique moderne, modélisée et simulée, ne saurait occulter le recours à l'expérience réelle. La simulation moderne suscite des mondes virtuels dont la logique, qui tient parfois du rêve, pourrait se révéler celle du cauchemar si elle se déconnectait totalement de l'expérience sensible et si la matière symbolique devait définitivement remplacer la matière réelle. Mais nous n'en sommes pas là et le recours au sensible, aux infrastructures matérielles et aux coûts réels nous remet périodiquement, malgré l'excroissance surréaliste que nous avons créée, dans une perspective de rationalisme appliqué.
Références
Réf 1 : J.-M. Leblond, Logique et méthode chez Aristote, Paris, Vrin, 1970, 2è ed., p.235
Réf 2 : Descartes, Discours de la méthode, 6è partie, «choses requises pour aller plus avant en la recherche de la nature», Ruvres, Paris, Gallimard, 1951, p. 169-170.
Réf 3 : Newton, Principes mathématiques de la philosophie naturelle, tr. Fr. Paris, Bourgois, 1985, p.76 sq.
Réf 4 : Newton, op.cit., p.77.
Réf 5 : Lagrange, Mécanique Analytique, 1ère éd. p. 25 ; éd. Blanchard, p. 27 et 40. Cf. P. Bailhache, Louis Poinsot, la théorie générale de l'équilibre et du mouvement des systèmes, Paris, Vrin, 1975, p. 127-132.
Réf 6 : S. Bachelard, "Quelques remarques épistémologiques sur la notion de modèle", Colloque Elaboration et justification des modèles, chez Maloine-Dion, 1979, t.1, p.3
Réf 7 : Claude-Bernard, Introduction à l'étude de la méthode expérimentale, Paris, Garnier-Flammarion, 1966, p.41
Réf 8 : Claude-Bernard, op. cit., p.55
Réf 9 : Claude-Bernard, op. cit., p.89
Réf 10 : Claude-Bernard, op. cit., p.90
Réf 11 : G. Canguilhem, «Modèles et analogies dans la découverte en biologie», Etudes d'histoire des sciences, Paris, Vrin, 1975, p. 308.
Réf 12 : J. Monod, Le hasard et la nécessité, (1970), Paris, Point-Seuil, 1973, p. 85 sq.
Réf 13 : Cf. E. Bernhard-Weil, L'arc et la corde, Paris, Maloine-Doin, 1975, P.14-15
Réf 14 : D. Parrochia, Philosophie des réseaux, PUF, 1993 ; voir aussi P. Acot, Histoire de l'écologie, PUF, 1988.
Réf 15 : E. Guyon, "Modélisation et expérimentation", in G. Cohen-Tannoudji, Virtualité et réalité dans les sciences, Paris, Editions Frontières, 1995, pp.95-118.
Réf 16 : Ph. Quéau, Eloge de la simulation, Seyssel, Champ Vallon, 1986, p 161.
Réf 17 : G. G. Granger, Le probable, le possible et le virtuel, Paris, 0. Jacob, 1995, p. 9.
VIDEO CANAL U LIEN |
|
|
|
|
 |
|
L'EAU : UN LIQUIDE ORDINAIRE OU EXTRAORDINAIRE |
|
|
|
|
|
L'EAU : UN LIQUIDE ORDINAIRE OU EXTRAORDINAIRE
L'eau est un liquide dont les propriétés sont tout à fait surprenantes, à la fois comme liquide pur et comme solvant. C'est un liquide très cohésif : ses températures de cristallisation et d'ébullition sont très élevées pour un liquide qui n'est ni ionique, ni métallique, et dont la masse molaire est faible. Cette cohésion est assurée par les liaisons hydrogène entre molécules d'eau ; l'eau fait ainsi partie d'un petit groupe de liquides qu'on appelle liquides associés. Cependant, parmi ces liquides, la cohésion de l'eau est remarquable, et elle se traduit par une chaleur spécifique énorme. Cette résistance aux variations de température a des conséquences climatiques importantes, puisque la capacité calorifique des océans leur fait jouer le rôle de régulateurs thermiques du climat. L'eau est aussi un liquide très cohésif d'un point de vue diélectrique : sa constante diélectrique est bien plus élevée que celle qu'on attendrait sur la base de la valeur du moment dipolaire de la molécule isolée. C'est aussi, dans les conditions usuelles de température et de pression, un liquide peu dense : les atomes y occupent moins de la moitié du volume total ; une grande partie du volume de l'eau liquide est donc formée de cavités. Le volume occupé par ces cavités varie de manière tout à fait anormale à basse température. D'abord, l'eau se dilate quand on la refroidit en dessous d'une température appelée température du maximum de densité. Ensuite, l'eau se dilate encore de 9 % en cristallisant, contrairement à la plupart des liquides, qui se contractent d'environ 10 % en cristallisant. Cette augmentation de volume, qui fait flotter la glace sur l'eau, a des conséquences environnementales considérables : si la glace était plus dense que l'eau liquide, toute la glace formée dans les régions arctiques coulerait au fond des océans au lieu de former une banquise qui les isole thermiquement des températures extérieures, et la production de glace continuerait jusqu'à congélation complète de ces océans Pour presque tous les liquides, l'application d'une pression réduit la fluidité et favorise le solide par rapport au liquide. Au contraire, pour l'eau à basse température, l'application d'une pression accroît la fluidité et favorise le liquide par rapport à la glace. Cet effet anormal de la pression permet à l'eau de rester fluide lorqu'elle est confinée dans des pores ou des films nanométriques, contrairement aux autres liquides qui se solidifient sous l'effet des pressions de confinement. Cette persistance de l'état fluide est capitale pour le fonctionnement des cellules biologiques : en effet, de nombreux processus requièrent le déplacement de couches d'hydratation avant le contact entre macromolécules, ou avant le passage d'un ligand vers son récepteur. De même le passage des ions à travers les canaux qui traversent les membranes des cellules n'est possible que grâce à l'état fluide de l'eau confinée dans ces canaux. Les théories anciennes attribuaient toutes ces anomalies au fait que les molécules d'eau sont liées par des liaisons H. En ce sens, l'eau devrait avoir des propriétés « en ligne » avec celles d'autres liquides associés (éthanol, glycols, amides). Pour les propriétés de cohésion, c'est une bonne hypothèse de départ – bien que les propriétés de l'eau (densité d'énergie cohésive, constante diélectrique) soient supérieures à celles des liquides comparables. Pour les autres propriétés, cette hypothèse n'est pas suffisante : les autres liquides associés ne partagent pas les propriétés volumiques anormales de l'eau, ni son polymorphisme, ni son comportement comme solvant. Certains liquides ont un comportement qui ressemble à celui de l'eau pour une de ses propriétés : par exemple, on connaît quelques liquides qui se dilatent à basse température, ou en cristallisant. Nous découvrirons peut-être un jour que chacune des propriétés anormales de l'eau existe aussi dans un autre liquide. Cependant il est remarquable qu'un seul liquide rassemble autant d'anomalies. Il y a donc un besoin d'explication, auquel ne répondent pas les théories développées pour les liquides simples.
Le texte de Bernard Cabane et Rodolphe Vuilleumier ci-dessous est similaire aux principaux points développés lors de la 593 ème conférence de lUniversité de tous les savoirs donnée le 15 juillet 2005 1
Par Bernard Cabane, Rodolphe Vuilleumier : « La physique de leau liquide »
L'eau est le liquide le plus abondant à la surface de la terre. C'est un liquide dont les propriétés sont tout à fait surprenantes, à la fois comme liquide pur et comme solvant. L'eau est un liquide très cohésif : ses températures de cristallisation et d'ébullition sont très élevées pour un liquide qui n'est ni ionique, ni métallique, et dont la masse molaire est faible. Ainsi, l'eau reste liquide à pression atmosphérique jusqu'à 100 °C, alors que l'extrapolation de la série H2S, H2Se, H2Te donnerait une température d'ébullition de - 80°C. Cette cohésion est assurée par les liaisons hydrogène entre molécules d'eau ; l'eau fait ainsi partie, avec les alcools et les amines, d'un petit groupe de liquides qu'on appelle liquides associés (Figure 1). Parmi ces liquides, la cohésion de l'eau est remarquable. Par exemple, l'eau a des températures de fusion et d'ébullition très supérieures à celles de l'ammoniac et de l'acide fluorhydrique, qui font des liaisons H plus faibles ou spatialement moins développées.
Figure 1. Densités électroniques du dimère, obtenues par calcul des orbitales localisées via la mécanique quantique. Le "pont" de densité électronique qui joint les deux molécules est la « signature » de la liaison H.
La cohésion de l'eau se traduit aussi par une chaleur spécifique énorme : il faut 3 fois plus d'énergie pour réchauffer l'eau que pour la même masse de pentane, et 10 fois plus que pour la même masse de fer. Cette chaleur spécifique est aussi beaucoup plus élevée que celle du solide (plus de 2 fois supérieure à celle de la glace), alors que la plupart des liquides ont des chaleurs spécifiques proches de celles des solides correspondants. Elle est due à l'absorption de chaleur par la rupture de liaisons hydrogène : la chaleur absorbée par ces processus n'est pas disponible pour augmenter l'énergie cinétique des molécules, ce qui réduit l'élévation de température. Cette résistance aux variations de température a des conséquences climatiques importantes, puisque la capacité calorifique des océans leur fait jouer le rôle de régulateurs thermiques du climat.
L'eau est aussi un liquide très cohésif d'un point de vue diélectrique : sa constante diélectrique est bien plus élevée que celle qu'on attendrait pour un liquide non associé sur la base du moment dipolaire de la molécule isolée. Qualitativement, cette réponse très forte aux champs électriques est due à l'enchaînement des molécules par les liaisons hydrogène, car les molécules liées par des liaisons hydrogène se polarisent mutuellement (Figure 2).
Figure 2. Variations de densité électronique causées par les interactions des deux molécules du dimère, par rapport aux densités électroniques de molécules isolées. Les régions où la densité électronique du dimère est excédentaire sont ombrées en gris, celles qui ont perdu de la densité électronique en blanc. L'alternance régulière de régions contenant un excès et un défaut de densité électronique crée une polarisation des molécules, qui augmente le moment dipolaire du dimère.
C'est grâce à cette constante diélectrique exceptionnelle que la vie a pu se développer dans l'eau (Figure 3). La plupart des molécules biologiques sont en effet ioniques, et les processus biochimiques requièrent la dissociation des paires d'ions et l'écrantage des charges électriques. C'est la polarisation des molécules d'eau autour d'un ion qui compense le champ électrique créé par l'ion, et permet ainsi la dissociation des paires d'ions et la dissolution des cristaux ioniques. L'exemple le plus courant de solution ionique est, bien sur, l'eau de mer, qui ne contient que 9 molécules d'eau par paire d'ions.
Figure 3. Constantes diélectriques relatives des liquides polaires usuels (variation parabolique en fonction du moment dipolaire de la molécule isolée) et de liquides associés points situés très au dessus). La valeur anormalement élevée de la constante diélectrique de l'eau est due à la polarisation mutuelle des molécules dans le liquide
L'eau est, dans les conditions usuelles de température et de pression, un liquide peu dense. Sa masse volumique est relativement peu élevée pour un liquide aussi cohésif (les huiles ont des densités comparables, mais sont beaucoup moins cohésives). Cette faible masse volumique exprime le fait que le volume occupé par les atomes est faible par rapport au volume total : les atomes de la molécule d'eau n'occupent que 49 % du volume disponible par molécule. Une grande partie du volume de l'eau liquide est donc formée de cavités.
L'eau présente toute une série d'anomalies liées aux variations de son volume. Tout d'abord, la variation en température de sa masse volumique est anormale à basse température. Pour presque tous les liquides, le volume occupé diminue régulièrement lorsqu'on abaisse la température, par suite de la réduction du désordre et surtout du nombre de lacunes excitées thermiquement. Au contraire, l'eau se dilate quand on la refroidit en dessous d'une température appelée température du maximum de densité (TMD H + 4 °C pour H2O). L'eau liquide à basse température est un liquide peu dense par rapport à ce qu'on attendrait d'après sa densité à haute température.
Figure 4 Variation de la masse volumique de l'eau liquide avec la température. Pour les liquides « normaux », la masse volumique décroit de manière monotone. La température du maximum de densité de l'eau vaut 4 °C dans H2O, 11.2 °C dans D2O et 13,4 °C dans T2O. La décroissance de la densité à basse température résulte d'un changement de la structure du liquide, qui crée systématiquement des liaisons et des cavités.
Pour presque tous les liquides, le volume occupé se réduit d'environ 10 % lors de la cristallisation, car les atomes ou les molécules sont empilés de manière plus efficace dans le cristal. Au contraire, l'eau se dilate d'environ 9 % en cristallisant. Cette augmentation de volume, qui fait flotter la glace sur l'eau, a des conséquences environnementales considérables : si la glace était plus dense que l'eau liquide, toute la glace formée dans les régions arctiques coulerait au fond des océans au lieu de former une banquise qui les isole thermiquement des températures extérieures, et la production de glace continuerait jusqu'à congélation complète de ces océans.
Les propriétés de l'eau confinée dans des pores ou des films nanométriques diffèrent aussi de celles des autres liquides. La plupart des liquides se stratifient lorsqu'ils sont confinés entre deux surfaces planes, et ils résistent comme des solides lorsqu'on essaie de les faire s'écouler. Au contraire, l'eau reste fluide même dans des géométries extrêmement confinées. Cette résistance à la solidification semble être due aux anomalies volumiques de l'eau, qui devient plus fluide lorsqu'elle est soumise à une pression. La persistance de l'état fluide de l'eau est capitale pour le fonctionnement des cellules biologiques : en effet, de nombreux processus requièrent le déplacement de couches d'hydratation avant le contact entre macromolécules. De même le passage des ions à travers les canaux qui traversent les membranes n'est possible grâce à la fluidité de cette eau confinée.
Les propriétés de l'eau comme solvant sont aussi très surprenantes. On comprend bien que les molécules polaires ou ioniques se dissolvent facilement dans l'eau, tandis que les molécules apolaires se dissolvent beaucoup plus difficilement. Cette préférence est à l'origine de phénomènes physico-chimiques comme la micellisation des molécules de tensioactifs, la formation des membranes biologiques, et le repliement ou la dénaturation des protéines. Cependant le passage dans l'eau de ces molécules hydrophobes ou amphiphiles se fait de manière tout à fait anormale : alors que la dissolution dans n'importe quel solvant est un processus défavorable du point de vue des énergies, mais favorisé par l'entropie, c'est l'inverse qui se produit pour la dissolution des molécules apolaires dans l'eau. Ces effets varient fortement avec la température, et on trouve que les solubilités augmentent aussi bien quand on va vers les basses températures (c'est bien pour les poissons, qui respirent l'oxygène dissous) que lorsqu'on va vers les températures élevées (l'eau super-critique est un bon solvant, utilisé, par exemple, pour extraire la caféine). Le minimum de solubilité coïncide à peu près avec le minimum de densité de l'eau pure, ce qui suggère que ces solubilités anormales sont liées à l'équation d'état (anormale elle aussi) de l'eau liquide.
Les théories anciennes attribuaient toutes ces anomalies au fait que les molécules d'eau sont liées par des liaisons H. En ce sens, l'eau devrait avoir des propriétés « en ligne » avec celles d'autres liquides associés (éthanol, glycols, formamide etc). Pour les propriétés de cohésion, c'est une bonne hypothèse de départ - bien que les propriétés de l'eau (densité d'énergie cohésive, constante diélectrique) soient supérieures à celles des liquides comparables. Pour les autres propriétés, cette explication n'est pas suffisante : les autres liquides associés ne partagent pas les propriétés volumiques anormales de l'eau, ni son polymorphisme, ni son comportement comme solvant.
Nous découvrirons peut-être un jour que chacune des propriétés anormales de l'eau existe aussi dans un autre liquide. Cependant il est remarquable qu'un seul liquide rassemble autant d'anomalies. Il y a donc un besoin d'explication, auquel ne répondent pas les théories développées pour les liquides simples.
On ne compte plus les théories proposées pour expliquer telle ou telle anomalie de l'eau, et abandonnées parce qu'elles n'expliquent que certaines anomalies, mais pas l'ensemble des propriétés de l'eau. On peut ainsi citer la théorie des « icebergs », dans sa version liquide pur (l'eau liquide serait formée de petits groupes de molécules ayant la structure de la glace, séparées par un liquide désordonné) et dans sa version solvant (les molécules d'eau se réorganiseraient autour d'un soluté apolaire pour former plus de liaisons hydrogène que l'eau pure, ce qui expliquerait le coût entropique de l'introduction du soluté). De nombreuses théories ont aussi postulé des structures particulières, comme des structures de type « clathrates », semblables aux cages que forment les molécules d'eau dans les hydrates de gaz cristallins. On discute actuellement une série de modèles qui postulent que l'eau serait formée de deux liquides mélangés dans des proportions qui changeraient avec la température et la pression, mais ne se sépareraient que dans des conditions de température inaccessibles aux expériences.
Il peut sembler paradoxal qu'une civilisation qui comprend la physique de l'infiniment grand et de l'infiniment petit, et qui est capable de prouesses technologiques considérables, n'arrive pas à décrire le liquide dans lequel tous les systèmes vivants fonctionnent. En fait, il s'agit d'un problème dur. Les verrous tiennent, pour une part, à une limitation des informations expérimentales. En effet, nous ne savons pas mesurer, dans un liquide, les fonctions de corrélation qui décrivent les arrangements de petits groupes de molécules (3 ou plus) : depuis un demi-siècle, nous sommes limités aux fonctions de corrélation de paires. Ils sont aussi dus à notre incapacité à simplifier correctement la description d'un liquide dans lequel les molécules forment des liaisons ayant un fort caractère orientationnel. Nous savons, bien sur, décrire ces liaisons, et nous pouvons simuler numériquement les mouvements des molécules soumises à ces interactions et à l'agitation thermique : nous pouvons ainsi reproduire certaines propriétés du liquide (mais pas toutes à la fois !) Par contre, nous ne savons pas, actuellement, construire une théorie de l'eau en utilisant les outils de la physique statistique.
Pour en savoir plus :
« The physics of liquid water »
B. Cabane, R. Vuilleumier
C. R. Geosciences. 337 (2005) 159
Liquides : solutions, dispersions, émulsions, gels
B. Cabane et S. Hénon
Livre publié par Belin (2003)
VIDEO canal U LIEN |
|
|
|
|
 |
|
SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS |
|
|
|
|
|
SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS
"Les progrès de l'optique ont conduit à des avancées significatives dans la connaissance du monde du vivant. Le développement des lasers impulsionnels n'a pas échappé à cette règle. Il a permis de passer de l'ère du biologiste-observateur à l'ère du biologiste-acteur en lui permettant à la fois de synchroniser des réactions biochimiques et de les observer en temps réel, y compris in situ. Ce progrès indéniable a néanmoins eu un coût. En effet, à cette occasion le biologiste est (presque) devenu aveugle, son spectre d'intervention et d'analyse étant brutalement réduit à celui autorisé par la technologie des lasers, c'est à dire à quelques longueurs d'onde bien spécifiques. Depuis peu, nous assistons à la fin de cette époque obscure. Le laser femtoseconde est devenu "" accordable "" des RX à l'infrarouge lointain. Il est aussi devenu exportable des laboratoires spécialisés en physique et technologie des lasers. Dans le même temps, la maîtrise des outils de biologie moléculaire et l'explosion des biotechnologies qui en a résulté, ont autorisé une modification à volonté des propriétés - y compris optiques - du milieu vivant. Une imagerie et une spectroscopie fonctionnelles cellulaire et moléculaire sont ainsi en train de se mettre en place. L'exposé présentera à travers quelques exemples, la nature des enjeux scientifiques et industriels associés à l'approche "" perturbative "" du fonctionnement des structures moléculaires et en particulier dans le domaine de la biologie. "
Texte de la 211e conférence de l’Université de tous les savoirs donnée le 29 juillet 2000.
La vie des molécules biologiques en temps réel : Laser et dynamique des protéines
par Jean-Louis Martin
En aval des recherches autour des génomes, alors que le catalogue des possibles géniques et protéiques est en voie d’achèvement, nous sommes entrés dans l’ère fonctionnelle qui doit nous conduire à comprendre comment toutes les molécules répertoriées interviennent pour « faire la vie ». Le profit qui sera fait de cette masse d’informations, dépend de notre capacité à intégrer ces données moléculaires dans des schémas fonctionnels sous-tendant la constitution et l’activité des cellules voire des organes et des organismes.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie des systèmes intégrés.
Au niveau cellulaire, l’approche fonctionnelle est déjà très avancée, en partie parce qu’elle s’appuie sur des compétences, des technologies et des concepts, largement communs à ceux développés par la génétique et la biologie moléculaire. Elle est toutefois, à ce jour, encore loin d’aboutir à une mise en cohérence du rôle fonctionnel des différents acteurs dont elle identifie le rôle au sein de la cellule : récepteurs, canaux ioniques, messagers, second messagers… Les progrès dans ce domaine vont être intimement liés à notre capacité à développer des outils autorisant à la fois un suivi in situ des différents acteurs, et une manipulation à l’échelle de la molécule.
Les développements technologiques spectaculaires dans le domaine des lasers impulsionnels a déjà permis le développement d’une nouvelle microscopie en trois dimensions : la microscopie confocale non linéaire. Associée à la construction de protéines chimères fluorescentes, cet outil a déjà permis de progresser significativement dans la localisation d’une cible protéique ou dans l’identification de voies de trafic intracellulaire.
Cependant, le décryptage in situ et in vivo du rôle fonctionnel des différents acteurs, en particulier protéique, ou plus encore, la compréhension des mécanismes sous-jacents, constituent des défis que peu d’équipes dans le monde ont relevés à ce jour. Il s’agit ici d’associer des techniques permettant de donner un sens à une cascade d’évènements qui s’échelonnent sur des échelles de temps allant de la centaine de femtoseconde1 à plusieurs milliers de secondes.
Le fonctionnement des protéines en temps réel
Le fonctionnement des macromolécules biologiques – protéines, acides nucléiques – est intimement lié à leur capacité à modifier leurs configurations spatiales lors de leur interaction avec des entités spécifiques de l’environnement, y compris avec d’autres macromolécules. Le passage d’une configuration à une autre requiert en général de faibles variations d’énergie, ce qui autorise une grande sensibilité aux variations des paramètres de l’environnement, associée à une dynamique interne des macromolécules biologiques s’exprimant sur un vaste domaine temporel.
Dans une première approche, on peut considérer qu’une vitesse de réaction biologique est la résultante du « produit » de deux termes: une dynamique intrinsèque des atomes et une probabilité de transition électronique. C’est en général ce dernier facteur de probabilité qui limite la vitesse d’une réaction. Une réaction biochimique est généralement lente non pas comme conséquence d’évènements intrinsèquement lents, mais comme le résultat d’une faible probabilité avec laquelle certains de ces évènements moléculaires peuvent se produire.
Plus précisément, une réaction biologique qui implique, par exemple, une rupture ou une formation de liaison, est tributaire de deux classes d’évènement : d’une part un déplacement relatif des noyaux des atomes et d’autre part une redistribution d’électrons parmi différentes orbitales. Ces deux catégories d’évènements s’expriment sur des échelles de temps qui leur sont propres et qui dépendent de la structure électronique et des masses atomiques des éléments constituant la molécule. Ainsi la dynamique des atomes autour de leur position d’équilibre est, en première approximation, celle d’oscillateurs harmoniques faits de masses ponctuelles couplées par des forces de rappels. Dans le cas des macromolécules biologiques, les milliers d’atomes que comporte le système évoluent sur une hyper-surface d’énergie dont la dimension est déterminée par le nombre de degrés de liberté de l’ensemble du complexe.
Le « travail » que doit effectuer une protéine est de nature très variée : catalyse dans le cas des enzymes, transduction de signal dans le cas de récepteurs, transfert de charges de site à site, transport de substances … mais il existe une caractéristique commune dans le fonctionnement de ces protéines : la sélection de chemins réactionnels spécifiques au sein de cette surface de potentiel. À l’évidence le système biologique n’explore pas l’ensemble de l’espace conformationnel : le coût entropique serait fatal à la réaction… et à l’organisme qui l’héberge.
L’identification de ce chemin réactionnel au sein de l’édifice constitue l’objectif essentiel des expériences de femto-biologie.
L’approche expérimentale : produire un séisme moléculaire et le suivre par stroboscopie laser femtoseconde
Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée.
Comment réussir à caractériser la dynamique conduisant à une conformation intermédiaire qui est elle-même à la fois très fugace et peu probable ?
La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc s’attendre à des mouvements dans les domaines femtoseconde et picoseconde2. Pour espérer avoir quelques succès dans cette investigation, il est par ailleurs impératif d’utiliser un système moléculaire accessible à la fois à l’expérimentation et à la simulation, la signature spectrale de la dynamique des protéines n’apportant que des informations indirectes. De plus, la réaction étudiée doit pouvoir être induite de manière « synchrone » pour un ensemble de molécules. Il est donc nécessaire de perturber de manière physiologique un ensemble moléculaire dans une échelle de temps plus courte que celle des mouvements internes les plus rapides, donc avec une impulsion femtoseconde.
Cette approche « percussionnelle » est commune à la plupart des domaines de recherche utilisant des impulsions femtosecondes. La biologie ne se distingue sur ce point, que dans l’adaptation de la perturbation optique pour en faire une perturbation physiologique. Le problème est naturellement résolu dans le cas des photorécepteurs pour lesquels le photon est « l’entrée » naturelle du système. Ceci explique les nombreux travaux en photosynthèse : transfert d’électron dans les centres réactionnels bactériens, transfert d’énergie au sein d’antennes collectrices de lumière dans les bactéries, mais aussi les études transferts de charges au sein d’enzyme de réparation de l’ADN ou responsable de la synchronisation des rythmes biologiques avec la lumière solaire, ainsi que les travaux sur les premières étapes de la vision dans la rhodopsine.
Il existe par ailleurs des situations favorables où la protéine comporte un cofacteur optiquement actif qui peut servir de déclencheur interne d’une réaction: c’est la cas des hémoprotéines comme l’hémoglobine que l’on trouve dans les globules rouges ou les enzymes impliquées dans la respiration des cellules comme la cytochrome oxydase. Dans ces hémoprotéines il est possible de rompre la liaison du ligand (oxygène, NO ou CO) avec son site d’ancrage dans la moléculen par une impulsion lumineuse femtoseconde.On se rapproche ici des conditions physiologiques, la transition optique permettant de placer le site actif de l’hémoprotéine dans un état instable entrainant la rupture de la liaison site actif-ligand en moins de 50 femtosecondes. Cette méthode aboutit à la synchronisation de l’ensemble des réactions d’un grand nombre de molécules. Il est alors possible de suivre leur comportement pendant la réaction et d’identifier les changements de conformation lors du passage des cols énergétiques. On peut faire une analogie sportive : en suivant l’évolution de la vitesse d’un « peloton » de coureurs cyclistes lors d’une étape du tour de France, on peut retracer le profil de cols et de vallées de l’étape, à condition que les coureurs partent au même instant. Pour un « peloton » de molécules, c’est le Laser femtoseconde qui joue le rôle du « starter » de l’étape.
Le paysage moléculaire dans les premiers instants d’une réaction : la propagation d’un séisme moléculaire
Dans les premiers instants qui suivent la perturbation (dissociation de l’oxygène de l’hème, par exemple), les premiers évènements moléculaires resteront localisés à l’environnement proche du site actif. À une discrimination temporelle dans le domaine femtoseconde, correspond donc une discrimination spatiale au sein de la molécule. Il devient ainsi possible de suivre la propagation du changement de conformation au sein de la molécule. Pour donner un ordre de grandeur, celui-ci s’effectue en effet en première approximation à la vitesse d’une onde acoustique ( environ 1200m/s) qui, traduite à l’échelle de la molécule, est 1200x10-12 soit 12 Å par picoseconde. En 100 fs la perturbation initiale est donc essentiellement localisée au site actif. Nous sommes au tout début du séisme moléculaire. En augmentant progressivement le retard de l’impulsion analyse par rapport à l’impulsion dissociation, il est possible de visualiser les chemins de changement conformationnel de la protéine et d’identifier les mouvements associés au fonctionnement de la macromolécule.
Ce simple calcul montre que la spectroscopie femtoseconde se distingue de manière fondamentale des techniques à résolution temporelle plus faible: il ne s’agit plus d’ obtenir des constantes de réaction avec une meilleur précision, mais l’intérêt majeure des « outils femtosecondes » provient du fait que pour la première fois il est possible de décomposer les évènements à l’origine de ces réactions ou induits par la réaction.
Cette discrimination spatiale associée à une résolution temporelle femtoseconde a un autre intérêt qui est de « simplifier » un système complexe sans avoir à utiliser une approche réductionniste (par coupure chimique) qui peut conduire le biophysicien moléculaire à étudier un sous-ensemble d’un complexe moléculaire dont les propriétés n’auront que peu de choses à voir avec la fonction biologique de l’ensemble.
La compréhension d’un automate moléculaire
Dès le début des années 80, l’approche percussionnelle dans le régime femtoseconde a été développée dans le domaine de la dynamique fonctionnelle des hémoprotéines et en particulier pour l’étude de l’hémoglobine. Cette protéine qui comporte quatre sites de fixation de l’oxygène, les hèmes, est capable d’auto-réguler sa réactivité à l’oxygène : c’est une régulation dite « allostérique ». La régulation allostérique de l’hémoglobine se traduit par le fait que la dissociation ou la liaison d’une molécule d’oxygène entraine une modification d’un facteur 300 de l’affinité des autres hèmes pour l’oxygène. La structure de l’hémoglobine est connue à une résolution atomique à la fois dans l’état ligandé (ou oxyhémoglobine) et dans l’état déligandé (désoxyhémoglobine). De ces travaux on sait que l’hémoglobine possède deux structures stables qui lui confèrent soit une haute affinité (état R) soit une basse affinité (état T) pour l’oxygène. Il s’agissait de déterminer le mécanisme, qui partant de la rupture d’une simple liaison chimique entre oxygène et fer induit un changement conformationel de l’ensemble du tétramère conduisant à distance à une modulation importante de l’affinité des autres sites de liaison.
Le débat de l’époque concernant la transition allostérique dans l’hémoglobine n’avait pas encore décidé du choix entre cause et conséquence au sein de l’édifice moléculaire. Nous connaissions les deux structures à l’équilibre avec une résolution atomique, grâce aux travaux de Max Perutz. Il était connu, même si cela n’était pas encore unanimement admis, que la dissociation de l’oxygène de l’hème entrainait « à terme » un changement conformationnel de ce dernier par déplacement de l’atome de fer en dehors du plan des pyrroles. Deux modèles s’opposaient: ce déplacement était-il la cause ou la conséquence du changement conformationnel impliquant la structure tertiaire et quaternaire de l’hémoglobine ? Dans la première hypothèse, cet évènement était crucial puisque le déclencheur de la communication hème-hème au sein de l’hémoglobine, c’est à dire le processus qui traduisait une perturbation très locale ( rupture d’une liaison chimique en un « basculement » de la structure globale vers un autre état). En discriminant temporellement les évènements consécutifs à la rupture de la liaison ligand-fer, il a été montré que le premier évènement est le déplacement du fer en dehors du plan de l’hème en 300 femtosecondes. Cet événement ultra-rapide constitue une étape cruciale dans la réaction de l’hémoglobine avec l’oxygène. Il contribue à donner à l’hémoglobine les propriétés d’un transporteur d’oxygène en autorisant une communication d’un site de fixation de l’oxygène à un autre. Un événement excessivement fugace et à l’échelle nanoscopique a donc retentissement au niveau des grandes régulations physiologiques : ici l’oxygénation des tissus.
À ce jour, l’essentiel du scénario consécutif à cet événement initial, qui conduit à la communication hème-hème, reste à découvrir. Pour cela il est nécessaire de faire appel à des outils permettant de suivre la propagation de ce « séisme initial » au sein de l’édifice et d’identifier ainsi les mouvements atomiques contribuant au chemin réactionnel. Des nouveaux outils restent à découvrir, certains sont en cours de développement : diffraction RX femtoseconde, spectroscopie infra-rouge dans le domaine THz sont probablement les outils adaptés.
e enzymatique : la caractérisation des états de transition
Dans son commentaire sur le prix Nobel en « femtochimie », l’éditeur de Nature3 écrit dans le dernier paragraphe : « It seems inevitable that ultrafast change in biological systems will receivre increasing attention ».
Sur quoi se fonde une telle certitude ?
Pour une part, sur une réflexion qui date d’un demi-siècle : celle de Linus Pauling qui était essentiellement de nature théorique. Pauling a proposé que le rôle des enzymes est d’augmenter la probabilité d’obtenir un état conformationnel à haute énergie très fugace ou, en d’autres termes, de stabiliser l’état de transition c’est-à-dire l’état conformationnel conduisant à la catalyse. En d’autres termes, il s’agit d’optimiser l’allure du « peloton » au sommet du Tourmalet. Dans les enzymes comme pour les coureurs, c’est à cet endroit que l’avenir de la réaction se joue, et c’est ici que les enzymes interviennent !
Le préalable à la compréhension du fonctionnement des enzymes est donc la caractérisation des états de transition. Une démonstration expérimentale indirecte a été la production d’anticorps catalytiques- ou abzymes- par Lerner et coll. dans le début des années 80. En effet, suivant le raisonnement de Pauling, les anti-corps « reconnaissent » leur cible épitopique dans leur état fondamental ( c’est à dire au minimum de la surface de potentiel, dans la vallée énergétique) alors que les enzymes reconnaissent leur cible, le substrat, dans son état de transition, au col énergétique. Les anticorps deviendont catalytiques si, produits en réponse à la présence d’une molécule mimant l’état de transition d’un substrat, ils sont mis en présence de ce dernier... : ça marche... plus ou moins bien, mais ceci est une autre histoire.
La caractérisation de cet état de transition est donc un préalable à la compréhension des mécanismes de catalyse mais aussi à la conception d’effecteurs modifiant la réactivité. Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée, l’interprétation des spectres ne pouvant plus être directe, comme dans le cas des molécules diatomiques. La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc, ici aussi, s’attendre à des mouvements dans le domaine femtoseconde.
Il existe une classe d’enzymes pour laquelle la structure de l’état de transition est connue grace à des approches théoriques : ce sont les protéases dont on sait qu’elles favorisent la configuration tétrahédrique du carbone de la liaison peptidique.Cette connaissance de l’état de transition a autorisé une approche rationnelle dans la conception de molécules « candidat-médicament »: les inhibiteurs de protéase. Il n’est donc pas surprenant qu’à ce jour, les seuls médicaments sur le marché -et non des moindres- issus d’une démarche scientifique véritablement rationnelle soient des inhibiteurs de protéases ou de peptidases : inhibiteurs de l’enzyme de conversion (IEC), inhibiteurs de protéase du virus HIV, base de « la tri-thérapie ».
En donnant l’espoir de photographier les états de transition, la femto-biologie ouvre la perspective d’une démarche rationnelle dans la conception d’inhibiteurs spécifiques. Avant qu’une telle possibilité ne soit offerte, il reste néanmoins à surmonter de sérieuses difficultés: le développement d’une méthode plus directe de visulisation des conformations, en particulier par diffraction RX femtoseconde, mais aussi la mise au point de méthodes de synchronisation à l’échelle femtoseconde de réactions enzymatiques au sein d’un cristal.
Filmer les molécules à l’échelle femtoseconde a permis de mettre en évidence un comportement inattendu d’enzymes de la respiration : l’utilisation de mouvements de balancier des atomes au profit d’une grande efficacité de réaction
La vie de tous les organismes aérobies – dont nous sommes – dépendent d’une classe d’enzyme : les oxydases et plus particulièrement pour les eucaryotes, de cytochromes oxydases. Cette enzyme est la seule capable de transférer des électrons à l’oxygène en s’auto-oxydant de manière réversible. Elle est responsable de la consommation de 90 % de l’oxygène de la biosphère.
Un dysfonctionnement de cette enzyme a un effet délétère sur la cellule, en particulier par production du très toxique radical hydroxyle °OH. Au delà d’un certain seuil de production, les systèmes de détoxification sont débordés. Le stress oxydatif qui en résulte peut se traduire par diverses pathologies. On retrouve une telle situation en période post-ischémique dans l’infarctus du myocarde, mais aussi dans des maladies neurodégénératives ou lors du vieillissement.
Cette enzyme catalyse la réduction de l’oxygène en eau à partir d’équivalents réducteur cédés par le cytochrome c soluble. Cette réduction à quatre électrons est couplée à la translocation de quatre protons à travers la membrane mitochondriale. L’oxygène et ses intermédiaires restent liés à un hème (l’hème a3) dans un site très spécifique. Ce site comprend, outre l’heme a3, un atome de cuivre, le CuB. Cet atome joue un rôle important dans le contrôle de l’accès des ligands vers ce site ou vers le milieu. Des ligands diatomiques (O2, NO, CO) peuvent établir des liaisons soit avec le Fer de l’hème a3, soit avec le CuB, mais le site actif parait trop encombré pour accommoder deux ligands.
Des études récentes en dynamique femtoseconde ont permis d’élucider le mécanisme de transfert de ligand (monoxyde de carbone (CO)), de l’hème a3 vers le CuB. Le CO est une molécule de transduction du signal produite en faible quantité par l’organisme, qui inhibe la cytochrome c oxidase par formation d’un complexe heme a3-CO stable. En suivant cette réaction par spectroscopie femtoseconde, il a été possible de mettre en évidence un mécanisme très efficace, et en toute sécurité, de transfert d’une molécule dangereuse pour la vie cellulaire. L’enzyme libère la molécule de CO d’un premier site en lui donnant une impulsion qui oriente sa trajectoire vers le site suivant en la protégeant de collisions avec l’environnement.
Dans ce dernier exemple l’enzyme a atteint un degré de sophistication supplémentaire : outre le franchissement du col énergétique de façon optimale, l’enzyme évite la diffusion d’une molécule dangereuse pour la survie cellulaire, tout en l’utilisant comme messager très efficace !
Vers le décloisonnement des disciplines
Le cinema moléculaire n’en est qu’à ses débuts. Il est essentiellement muet. La filmothèque est à peine embryonnaire, le nombre de plan-séquences ne permet pas encore de révéler un véritable scénario. L’essentiel est donc à venir.
Reconstruire le film des évènements conduisant à la vie cellulaire, les intégrés dans des schémas fonctionnels, va donc constituer l’objectif des prochaines décennies.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie de la cellule ou des organes. Le transfert des outils de la physique, et au-delà, l’invention de nouveaux outils, y compris moléculaires, l’émergence de nouveaux concepts, va nécessiter le développement de synergies entre acteurs évoluant jusqu’ici dans des sphères disjointes : biologistes cellulaire et moléculaire, physiciens, chimistes, bioinformaticiens… Dans ce cadre il sera utile de créer les conditions permettant de rassembler en un seul site, l’ensemble des compétences.
1 Femtoseconde : le milliardième de millionième de seconde.
2 Picoseconde : millioniène de millionième de seconde = 1000 femtosecondes.
3 Vol 401,p. 626,14 octobre 1999.
VIDEO CANAL U LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 ] Précédente - Suivante |
|
|
|
|
|
|