ecole de musique piano
     
menu
 
 
 
 
 
 

PLANCK : MATIÈRE NOIRE ET NEUTRINOS FOSSILES

 

Paris, 1er décembre 2014


Planck : nouvelles révélations sur la matière noire et les neutrinos fossiles


La collaboration Planck, qui implique notamment le CNRS, le CEA, le CNES et plusieurs universités françaises, dévoile à partir d'aujourd'hui à la conférence de Ferrara (Italie) les résultats des quatre années d'observation du satellite Planck de l'Agence spatiale européenne (ESA), dédié à l'étude du « rayonnement fossile », la plus vieille lumière de l'univers. Pour la première fois, la plus ancienne image de notre univers est mesurée précisément selon deux paramètres de la lumière (en intensité et en polarisation1), sur l'ensemble de la voûte céleste. Cette lumière primordiale nous permet de « voir » les particules les plus insaisissables : la matière noire et les neutrinos fossiles.
De 2009 à 2013, le satellite Planck a observé le rayonnement fossile, la plus ancienne image de l'univers, encore appelé fonds diffus cosmologique. Aujourd'hui, avec l'analyse complète des données, la qualité de la carte obtenue est telle que les empreintes laissées par la matière noire et les neutrinos primordiaux, entre autres, sont clairement visibles.

Déjà, en 2013 la carte des variations d'intensité lumineuse avait été dévoilée, nous renseignant sur les lieux où se trouvait la matière 380 000 ans après le Big-Bang. Grâce à la mesure de la polarisation de cette lumière (pour le moment dans 4 des 7 canaux2), Planck est capable de voir comment cette matière bougeait. Notre vision de l'univers primordial devient alors dynamique. Cette nouvelle dimension et la qualité des données permettent de tester de nombreux paramètres du modèle standard de la cosmologie. En particulier, elles éclairent aujourd'hui ce qu'il y a de plus insaisissable dans l'univers : la matière noire et les neutrinos.

De nouvelles contraintes sur la matière noire
 
Les résultats de la collaboration Planck permettent à présent d'écarter toute une classe de modèles de matière noire, dans lesquels l'annihilation matière noire - antimatière noire serait importante. L'annihilation entre une particule et son antiparticule3 désigne la disparition conjointe de l'une et de l'autre, qui s'accompagne d'une libération d'énergie.

L'idée de matière noire commence à être largement admise mais la nature des particules qui la composent reste inconnue. Les modèles sont nombreux en physique des particules et l'un des buts aujourd'hui est de réduire le champ des possibles en multipliant les voies d'exploration, par exemple en recherchant des effets de cette matière mystérieuse sur la matière ordinaire et la lumière. Les observations de Planck montrent qu'il n'est pas nécessaire de faire appel à l'existence d'une forte annihilation matière noire - antimatière noire pour expliquer la dynamique des débuts de l'univers. En effet, un tel mécanisme produirait une quantité d'énergie qui influerait sur l'évolution du fluide lumière-matière, en particulier aux périodes proches de l'émission du rayonnement fossile. Or, les observations les plus récentes n'en portent pas la trace.

Ces nouveaux résultats sont encore plus intéressants lorsqu'ils sont confrontés aux mesures réalisées par d'autres instruments. Les satellites Fermi et Pamela, tout comme l'expérience AMS-02 à bord de la station spatiale internationale, ont observé un excès de rayonnement cosmique, pouvant être interprété comme une conséquence de l'annihilation de matière noire. Compte tenu des résultats de Planck, il va falloir préférer une explication alternative à ces mesures d'AMS-02 ou de Fermi  (par exemple l'émission de pulsars non détectés) si l'on fait l'hypothèse – raisonnable – que les propriétés de la particule de matière noire sont stables au cours du temps.

Par ailleurs, la collaboration Planck confirme que la matière noire occupe un peu plus de 26 % de l'univers actuel (valeur issue de son analyse en 2013), et précise la carte de la densité de matière quelques milliards d'années après le Big-Bang, grâce aux mesures en température et en polarisation en modes B.

Les neutrinos des premiers instants décelés

Les nouveaux résultats de la collaboration Planck portent aussi sur un autre type de particules très élusives : les neutrinos. Ces particules élémentaires « fantômes », produites en abondance dans le Soleil par exemple, traversent notre planète pratiquement sans interaction, ce qui rend leur détection extrêmement difficile. Il n'est donc pas envisageable de détecter directement les premiers neutrinos, produits moins d'une seconde après le Big-Bang, qui sont  extrêmement peu énergétiques. Pourtant, pour la première fois, Planck a détecté sans ambiguïté l'effet de ces neutrinos primordiaux sur la carte du rayonnement fossile.

Les neutrinos primordiaux décelés par Planck ont été libérés une seconde environ après le Big-Bang, lorsque l'univers était encore opaque à la lumière mais déjà transparent à ces particules qui peuvent s'échapper librement d'un milieu opaque aux photons, tel que le cœur du Soleil. 380 000 ans plus tard, lorsque la lumière du rayonnement fossile a été libérée, elle portait l'empreinte des neutrinos car les photons ont interagi gravitationnellement4 avec ces particules. Ainsi, observer les plus anciens photons a permis de vérifier les propriétés des neutrinos.

Les observations de Planck sont conformes au modèle standard de la physique des particules. Elles excluent quasiment l'existence d'une quatrième famille de neutrinos5 auparavant envisagée d'après les données finales du satellite WMAP, le prédécesseur américain de Planck. Enfin, Planck permet de fixer une limite supérieure à la somme des masses des neutrinos, qui est à présent établie à 0.23 eV (électronvolt)6.


Les données de la mission complète et les articles associés qui seront soumis à la revue Astronomy & Astrophysics (A&A) seront disponibles dès le 22 décembre 2014 sur le site de l'ESA. Ces résultats sont notamment issus des mesures faites avec l'instrument haute fréquence HFI conçu et assemblé sous la direction de l'Institut d'astrophysique spatiale (CNRS/Université Paris-Sud) et exploité sous la direction de l'Institut d'astrophysique de Paris (CNRS/UPMC) par différents laboratoires impliquant le CEA, le CNRS et les universités, avec des financements du CNES et du CNRS.

 

DOCUMENT         CNRS           LIEN

 
 
 
 

AGATA ET RAYONS GAMMA

 

Paris, 6 juin 2014


AGATA, le détecteur européen itinérant, arrive au Ganil
AGATA, détecteur de rayonnement gamma, vient de rejoindre le Grand accélérateur national d'ions lourds (Ganil, CNRS/CEA). Après des séjours en Italie et en Allemagne, il s'installe en France pour une campagne de mesures de deux ans au moins, dans le cadre d'un programme scientifique dédié à l'étude de la structure des noyaux atomiques. Le CNRS et le CEA ont été fortement impliqués dans la construction d'AGATA qui constitue une avancée technologique majeure par rapport aux anciens détecteurs : il permet de reconstruire la trajectoire des photons qui le traversent. À partir de 2015, ce sont plusieurs dizaines d'équipes de physiciens venant de toute l'Europe qui se succéderont au Ganil afin de réaliser leurs expériences avec ce détecteur ultra-perfectionné.
 AGATA1 est basé sur la technique dite du « tracking », qui permet  d'identifier chaque point d'impact d'un photon lorsqu'il traverse le détecteur, ceci afin de suivre son parcours de façon précise et ainsi augmenter la sensibilité des mesures. Ces photons de grande énergie sont détectés par les « yeux » d'AGATA. Appelés capsules, ils sont constitués de mono-cristaux de germanium dont la pureté quasi-parfaite est garante de la qualité des mesures. Ces cristaux composent la base du système de détection. Ils absorbent les photons qui traversent le détecteur et convertissent leur énergie avec une précision inégalée en signal électrique.
Actuellement le système de détection d'AGATA est composé de 23 cristaux de germanium pur. En 2015, au Ganil, il en comptera au minimum 32, offrant une amélioration d'un facteur 10 de la sensibilité de détection du rayonnement gamma émis par des noyaux exotiques. L'ambition du projet est de réunir à terme 180 cristaux couvrant une sphère complète de 362 kg de germanium hyper-pur.
Le programme scientifique d'AGATA au Ganil est l'étude de la structure des noyaux atomiques par spectroscopie gamma de haute résolution. Les travaux porteront sur les noyaux proches des isotopes dits « doublement magiques », piliers de notre compréhension de la matière nucléaire. L'organisation particulière des protons et des neutrons au sein de ces noyaux et leur plus grande stabilité intéressent notamment les chercheurs. Les données obtenues seront utilisées pour contraindre les modèles théoriques décrivant l'interaction nucléaire entre les nucléons (protons et neutrons) dans le noyau. Ces modèles permettront de comprendre l'origine et l'abondance de la matière nucléaire dans l'Univers.
La collaboration AGATA est née en 2003 entre une quarantaine d'instituts de douze pays européens. Plusieurs laboratoires du CNRS et du CEA ont contribué au développement de ce spectromètre gamma : le Centre de sciences nucléaires et de sciences de la matière (CNRS/Université Paris-Sud), le Ganil (CNRS/CEA), l'Institut pluridisciplinaire Hubert Curien (CNRS/Université de Strasbourg), l'Institut de physique nucléaire de Lyon (CNRS/Université Claude Bernard Lyon 1), l'Institut de physique nucléaire d'Orsay (CNRS/Université Paris-Sud) et l'Institut de recherche sur les lois fondamentales de l'Univers du CEA.
AGATA est un grand voyageur. Après les premiers tests d'un prototype en 2005 à l'université de Cologne en Allemagne, une  première campagne de mesures a eu lieu de 2010 à 2012 à l'INFN2 de Legnaro en Italie. Le détecteur a ensuite rejoint le GSI3 de Darmstadt en Allemagne pour des prises de données jusqu'en 2014. Cette campagne s'est terminée avec succès en mai dernier et la nouvelle étape de ce nomade de la physique nucléaire est le Ganil. AGATA ayant pour vocation de rester itinérant, il repartira ensuite pour d'autres escales. A terme, il sera utilisé dans les expériences futures notamment auprès de la nouvelle installation Spiral24 du laboratoire.

 

DOCUMENT               CNRS               LIEN

 
 
 
 

GALAXIES,QUASARS ET AMAS DE GALAXIES

 

Texte de la 195e conférence de l'Université de tous les savoirs donnée le 13 juillet 2000.

Évolution des Galaxies et des Quasars
par Françoise Combes
Les différents types de galaxies
Les galaxies sont observées sous des nombreuses formes, de nombreuses variétés. La principale classification distingue les galaxies à disques aplatis, ou galaxies spirales, et les galaxies elliptiques, composées essentiellement d'un sphéroïde de vieilles étoiles. La séquence de Hubble (voir Figure 1) place les divers types morphologiques selon leur concentration de masse centrale. Les galaxies spirales possèdent elles-aussi un sphéroïde concentré de vieilles étoiles en plus de leur disque, et l'importance de ce « bulbe » central augmente progressivement le long de la séquence (de droite à gauche). Le gaz interstellaire se concentre dans le disque, avec les jeunes étoiles nouvellement formées à partir du gaz; c'est pourquoi la fraction de masse de gaz varie aussi le long de la séquence, cette fois diminue de droite à gauche. La masse totale de la galaxie augmente de droite à gauche. De plus, l'aspect de la spirale évolue aussi le long de la séquence : les bras sont de plus en plus enroulés lorsqu'on se déplace de la droite vers la gauche.
Figure 1 : Séquence de Hubble des galaxies. À gauche, sont les galaxies elliptiques, qui nous apparaissent comme des ellipses en projection sur le ciel, et qui sont en fait des sphéroïdes, plus ou moins aplatis ou allongés. À droite, des galaxies spirales à disques, qui contiennent toutefois un sphéroïde en leur centre, ou « bulbe ». Le rapport bulbe sur disque croît de la droite vers la gauche. Il y a deux branches de galaxies spirales : les barrées et les non-barrées. Les premières constituent pratiquement les 3/4 des galaxies spirales.
La fraction des divers types morphologiques dépend beaucoup de l'environnement. Dans les amas denses de galaxies, les elliptiques dominent. Dans les régions plus isolées, ce sont les spirales qui dominent (elles constituent les 2/3 des galaxies). Les interactions entre galaxies accélèrent le taux d'évolution, celle-ci consiste à former des étoiles à partir du gaz, et de plus en plus concentrer et augmenter la masse de la galaxie.
Galaxies en perpétuelle évolution
Les galaxies sont soumises à des forces contradictoires : d'une part la gravitation, le principal moteur pour rassembler la masse, et en opposition avec cette attraction, la rotation à l'origine de forces centrifuges, et les mouvements d'agitation désordonnée. Or toute galaxie voudrait concentrer sa masse pour minimiser son énergie.
Pour ce faire, il est nécessaire d'avoir du gaz pour réduire les mouvements d'agitation. Les nuages de gaz entrent en collision et dissipent l'énergie par rayonnement.
Les étoiles, elles, ne rentrent jamais en collision (elles sont trop compactes par rapport à leur distances relatives), et l'énergie cinétique correspondant à leurs mouvements relatifs ne se dissipe jamais. C'est ainsi que les galaxies elliptiques, sans gaz, atteignent un équilibre relatif, grâce à l'agitation désordonnée des étoiles, et n'évoluent plus. Si elles sont aplaties, ce n'est pas par rotation, mais parce que l'agitation désordonnée est plus grande dans la direction du grand axe de l'ellipsoïde.
Les galaxies à disque, elles, possèdent du gaz et peuvent dissiper l'énergie cinétique. De plus, la formation de spirales est très efficace pour évacuer la rotation. Les spirales ne sont pas des bras de matière, comme les nuages de lait dans le café remué, mais ce sont des ondes. Seules les ondes peuvent subsister malgré la rotation différentielle. Car les galaxies ne tournent pas comme un corps solide (comme un disque microsillon), mais le centre tourne beaucoup plus vite que le bord. La matière au centre met des millions d'années pour faire un tour, la matière du bord met des milliards d'années. Dans ces conditions, un bras matériel s'enroulerait très rapidement, de plusieurs centaines de tours depuis le début de l'Univers, et toute spirale serait effacée. Ce problème d'enroulement n'existe pas si les spirales sont des ondes. Ces ondes tournent autour du centre comme un corps solide, bien plus lentement que les étoiles. Les étoiles entrent dans l'onde spirale, et en ressortent, au bout de quelques millions d'années. Les ondes peuvent ainsi durer plus longtemps, mais ne sont pas éternelles non plus. Elles échangent de l'énergie avec la matière, et apparaissent et disparaissent en des échelles de temps de l'ordre de 100 millions d'années. S'il existe du gaz, elles peuvent être sans arrêt renouvelées.
Ces ondes, si elles s'enroulent dans le sens « traînant » par rapport à la rotation de la galaxie, permettent d'évacuer la rotation vers l'extérieur, et la galaxie est plus concentrée après le passage des ondes. En effet, les spirales observées dans les galaxies s'enroulent toujours dans le sens « traînant ».
D'autre part, les ondes favorisent la formation d'étoiles à partir du gaz. Dans les ondes, la densité s'accumule, le gaz est comprimé, et les instabilités gravitationnelles se déclenchent : de nouvelles étoiles sont formées dans les bras spiraux. En somme, la formation des bras spiraux accélère l'évolution des galaxies : elle permet à la masse de se concentrer en évacuant la rotation, et aux étoiles de se former à partir du gaz.
Encore plus efficaces que les ondes spirales, sont les ondes barrées; les ondes spirales peuvent se comparer à des ondes progressives sur une corde, alors que les barres sont des ondes stationnaires. Leur action est d'autant plus durable. La formation de la barre est précédée de la formation d'une spirale, comme le montre la figure 2.
Figure 2 : Les diverses étapes de formation d'une barre, dans une simulation numérique. En haut les étoiles, en bas le gaz. Une spirale se forme d'abord, qui évacue une grande partie du moment angulaire, et permet à la barre de s'amplifier. Un anneau se forme dans le gaz au lieu de résonance avec la barre.
Les 3/4 des galaxies spirales sont barrées, d'après de nouveaux résultats en lumière proche infra-rouge, qui s'affranchit de l'absorption par la poussière. Les barres sont de puissants facteur d'évolution, qui transfèrent la masse vers le centre, comme les spirales plus haut. Leur action s'autorégule d'elle-même; lorsqu'il y a trop de masse vers le centre, la barre s'affaiblit et peut même disparaître. Ceci se passe en plusieurs étapes.
Grâce à des résonances entre la barre et la matière du disque, des étoiles sont propulsées en hauteur, perpendiculairement au disque. Il se forme ainsi un bulbe en forme de boite ou de cacahouète (voir figure 3). La concentration de masse centrale contribue donc à former le bulbe.
Figure 3 : Projection de la barre à la fin de la simulation, vue par la tranche, lorsque la barre est perpendiculaire (gauche) et parallèle (droite) à la ligne de visée. Les étoiles sont soulevées perpendiculairement au plan par des résonances, et forment une structure en cacahouète. (d'après Combes et Sanders, A&A 96, 164, 1981.)
Le gaz, lui, s'accumule aussi au centre, dans des régions de résonance, qui forment des anneaux. Des flambées de formation d'étoiles peuvent se produire, lorsque la densité de gaz accumulée est suffisante. Une partie du gaz peut aussi alimenter un trou noir massif déjà formé dans une étape antérieure. Ce phénomène est favorisé par la création d'une seconde barre, à l'intérieur de la première, qui tourne encore plus vite. Les barres/spirales peuvent être imbriquées les unes dans les autres comme les poupées russes (figure 4). Elles se relaient pour concentrer la masse vers le centre.
Figure 4 : Il peut se former deux barres emboîtées, comme des poupées russes. Ici une barre nucléaire (droite) au sein de la barre primaire (gauche). Noter l'étoile en haut à gauche de la barre nucléaire, qui se retrouve dans les deux images et donne l'échelle relative. La barre secondaire tourne plus vite que la barre primaire (d'après Combes et al. 2000).
Lorsque la concentration de masse vers le centre est trop forte, la barre s'affaiblit et disparaît. Le gaz qui tombe sur la galaxie dans les parties externes va alors alimenter le disque, et n'arrivera plus au centre. L'équilibre disque/bulbe se rétablit au profit du disque, et une autre instabilité en forme de barre/spirale peut s'établir, et tout recommence. Plusieurs épisodes de barres/spirales peuvent se développer dans une galaxie au cours de sa vie.
D'où vient cette matière nouvelle qui alimente à nouveau le disque? Une galaxie est un système ouvert, continuellement en train d'acquérir de la masse. Lu gaz provient des parties externes, et tombe vers le centre. Il existe beaucoup de gaz autour des galaxies, observé en radioastronomie grâce à la raie de l'hydrogène atomique (HI) à 21 cm de longueur d'onde. Le gaz visible en HI s'étend jusqu'à un rayon 4 fois celui du disque visible en optique (figure 5).
Figure 5 : Carte du gaz d'hydrogène atomique (HI à 21cm) obtenue en radio-astronomie, avec le VLA (Very Large Array, USA), dans le système de galaxies en interaction Messier 81-82. La photo optique des galaxies est montrée à droite pour comparaison, à la même échelle (d'après Yun et al. 1994, Nature 372, 530).
Évolution le long de la séquence de Hubble
De tous les phénomènes décrits précédemment, on peut déduire l'évolution des galaxies sur la séquence de Hubble. Les galaxies rentrent sur la séquence par la droite, sous forme de systèmes très riches en gaz, soit irréguliers, soit spirales très peu évoluées. Ces disques sont très instables et forment des spirales et des barres très rapidement. Ces barres concentrent la masse vers le centre, forment un petit bulbe (figure 6). La barre s'affaiblit et devient plus axisymétrique, elle acquiert du gaz dans le disque et reforme une barre, peut-être même deux imbriquées. Le bulbe devient de plus en plus massif, et la galaxie remonte la séquence de Hubble. Les disques que l'on observe aujourd'hui sont relativement jeunes, ce ne sont pas les disques d'autrefois. Cette évolution est encore accélérée en présence d'interactions de galaxies.
Figure 6 : Schéma de l'évolution des galaxies le long de la séquence de Hubble. Une galaxie à disque peu massif, sans bulbe est instable sous forme de spirale/barre, et celle-ci rassemble la masse vers le centre (voir l'évolution du bulbe, dans la projection de profil). Lorsqu'il y a trop de masse au centre, la barre disparaît, et le gaz provenant de l'extérieur enrichit le disque. Plus tard, une autre barre pourra se former, lorsque le rapport disque/bulbe sera a nouveau favorable. Une barre secondaire (cf. étape 3) peut relayer la barre primaire dans la concentration de la masse vers le centre.
Interactions et fusions de galaxies
Ce n'est que dans les années 1970 que la nature de l'interaction entre galaxies a été élucidée, grâce à des simulations sur ordinateur. C'est une interaction de marée, gravitationnelle. Elle donne lieu à des morphologies très différentes de celles des marées dans le système solaire, car les galaxies sont des systèmes assez peu liés, très déformables. Les premières simulations simples, à 3 corps, ont remarquablement réussi à montrer le mécanisme de la formation des spirales à deux bras.
L'interaction de marée est bisymétrique, de même que les marées terrestres engendrées par le Soleil et la Lune (il y a deux marées par 24h). Les deux perturbations de départ, sont étirées en filaments et ponts entre galaxies. Elles s'enroulent grâce à la rotation différentielle de la galaxie, qui tourne plus vite au centre qu'aux bords.
Le gaz d'hydrogène atomique est beaucoup plus déformable, car moins lié gravitationnellement à la galaxie, aussi forme-t-il des morphologies plus spectaculaires (fig. 5).
Lorsque la collision est de plein fouet, il se forme des ondes en forme d'anneau qui se propagent du centre vers le bord, comme les ondes émises à la surface de l'eau par le jet d'une pierre. Au passage de l'onde, se déclenche une flambée de formation d'étoiles, qui rend l'anneau particulièrement brillant (figure 7). Dans la direction perpendiculaire au plan, la galaxie est aussi très déformée. Après excitation, le plan gauchi et tordu en forme de crêpe, oscille pendant longtemps. Tous les plans de galaxies sont observés ainsi gauchis, même en l'absence de perturbation extérieure évidente. Ce phénomène est intéressant, car il permet de nous renseigner sur le potentiel gravitationnel à trois dimensions, et notamment sur la forme des halos de matière noire, cette matière qui ne rayonne pas, mais que l'on soupçonne dominer la masse, grâce aux mouvements de la matière.
Figure 7 : a) La Roue de Charette (ou Cartwheel) est le résultat de la collision de plein fouet entre deux galaxies. Une onde en forme d'anneau se propage du centre au bord, en déclenchant la formation de nouvelles étoiles. Un deuxième anneau se développe au centre (image du Hubble Space Telescope).
b) Simulation numérique de la collision, et formation de l'anneau dans les étoiles (gauche) et le gaz (droite), d'après Horellou et Combes, 2000).
Lors des interactions entre galaxies, celles-ci échangent de la matière; il est facile de le reconnaître, lorsqu'elles n'ont pas le même sens de rotation. De nombreux systèmes ont ainsi été observés avec deux courants en contre-rotation, certaines étoiles tournant dans un sens et certaines dans l'autre. Parfois le gaz ne tourne pas dans le même sens que les étoiles. ces systèmes donnent lieu à des instabilités particulières à un bras spiral. Parfois l'accrétion de matière n'est pas dans le même plan, et une partie de la matière tourne dans un plan perpendiculaire au plan principal (cas des anneaux polaires). L'interaction entre notre propre galaxie, la Voie Lactée, avec les Nuages de Magellan, a donné lieu à la formation du courant « magellanique », un anneau polaire de gaz, qui tourne au-dessus de nos têtes, dans un plan perpendiculaire à celui de la Voie Lactée.
Autour d'une galaxie elliptique, les étoiles d'une galaxie compagnon, une fois celle-ci détruite par les forces de marée, oscillent selon leur énergie dans le potentiel de la galaxie principale, et dans leur ballet dessinent des coquilles d'étoiles éphémères. ce phénomène est observé dans pratiquement la moitié des galaxies elliptiques (figure 8).
Figure 8 : La galaxie Centaurus A est une galaxie elliptique à noyau actif. Un jet de plasma est visible en contours radio (ici en bleu). Des coquilles d'étoiles (soulignées en jaune), se sont formées tout autour, par l'accumulation des étoiles du compagnon qui a été avalé récemment. Les coquilles contiennent aussi du gaz (HI 21cm, contours ici en blanc), et du gaz moléculaire (observé dans les cercles rouges), d'après Charmandaris et al. (2000, A&A 356, L1).
La collision entre galaxies est très inélastique. Il faut beaucoup d'énergie pour déformer les galaxies. Cette énergie est prise aux dépens de l'énergie orbitale, donc du mouvement relatif des galaxies l'une par rapport à l'autre. Ceci freine les galaxies, qui se rapprochent l'une de l'autre en spiralant. Après une ou deux révolutions, elles coalescent. Le moment angulaire et la rotation sont absorbés par la matière noire autour. Le gaz HI part essentiellement dans les queues de marée. Le gaz plus dense, moléculaire, s'accumule au centre. Cette accumulation déclenche un feu d'artifice, une flambée de formation d'étoiles. Certaines galaxies forment des étoiles à raison de 1000 par an, alors que le taux normal est plutôt de l'ordre d'une par an. A ce rythme, elles vont épuiser leur gaz rapidement; comme cela ne peut durer qu'une courte période, on l'appelle un sursaut de formation d'étoiles, ou starburst.
Formation de trous noirs massifs
Un trou noir est, par définition, un objet assez compact pour qu'il existe autour de lui un horizon au-delà duquel la vitesse d'échappement est supérieure à la vitesse de la lumière. Autrement dit, même la lumière ne peut en sortir, si elle s'aventure au-delà d'une distance du centre égale à l'horizon. A la fin de l'évolution d'une étoile massive, une supernova peut exploser et laisser un résidu compact. C'est un trou noir, si sa masse est supérieure à 3 masses solaires. Mais sa masse ne sera pas plus que 10 masses solaires, comme ordre de grandeur.
Pourtant, au centre des galaxies, existent des trous noirs supermassifs, de l'ordre de 100 millions à quelques milliards de masses solaires. Leur existence donne lieu à des phénomènes très lumineux, lorsque la matière tombe sur le trou noir, avant d'arriver à l'horizon. C'est ce que l'on appelle le phénomène de noyaux actifs de galaxies (NAG) et quasars.
Les quasars
L'origine du mot « quasar » vient de la contraction de « quasi-stars ». Ce sont des objets ponctuels, comme des étoiles, au spectre bizarre. Les raies d'émission observées ne correspondent à aucune de celles observées dans les étoiles. C'est Marteen Schmidt qui en 1964 a le premier élucidé le mystère. Le spectre peut très bien se comprendre par des raies connues, si on admet qu'il a été décalé vers le rouge d'une grande quantité. Ce décalage vers le rouge est dû à l'effet Doppler et à l'expansion de l'Univers. Toutes les galaxies s'éloignent de nous à une vitesse proportionnelle à leur distance. Comme les quasars s'éloignent de nous à très grande vitesse, ce sont des objets très lointains. Ils sont restés pendant très longtemps les objets les plus lointains connus, ce n'est que très récemment que l'on a pu détecter, grâce au télescope spatial Hubble, des galaxies encore plus lointaines.
C'est parce que les quasars rayonnent beaucoup (mille fois autant que la Voie Lactée) qu'il est possible de les voir aussi loin. De plus, ils sont bien plus rares que les galaxies, aussi n'y en a -t-il pas de très proches. Il existe des activités de noyaux de moindre importance : galaxies de Seyfert, LINERS par exemple. Ceux-là peuvent se trouver plus près de nous. Dans ces systèmes actifs, on peut voir nettement la galaxie-hôte, sous-jacente, et les objets n'apparaissent pas si ponctuels. La nature de l'activité est la même : le rendement est très efficace, pour qu'une petite région, le noyau, puisse rayonner beaucoup plus qu'une galaxie toute entière. Ce rendement exceptionnel ne peut pas venir seulement des réactions nucléaires qui font rayonner les étoiles. Il s'agit de la transformation de l'énergie gravitationnelle directement en énergie de rayonnement autour d'un trou noir, dans un disque d'accrétion. Le rendement peut être 10-20 % par rapport à l'énergie de masse mc2 (alors que le rendement de l'énergie nucléaire est un peu moins de 1 %).
Lorsque le gaz spirale vers le trou noir, avant d'atteindre l'horizon, au-delà duquel même la lumière qu'il émet sera avalée par le trou noir, il émet du rayonnement très énergétique, rayons X, UV, visible, etc. La température est très chaude, des milliers à des millions de degrés. Les étoiles elles-mêmes peuvent être détruites par effet de marée en passant près du trou noir, et le gaz qu'elles libèrent va alimenter le trou noir.
Comment peut croître le trou noir massif ?
Toute la matière (gaz ou étoile) qui tombe sur le trou noir va l'alimenter, mais le trou noir ne peut pas être boulimique. Le gaz en tombant rayonne beaucoup, et peut être repoussé par la pression de radiation. Si le trou noir avale trop de matière, celle-ci va rayonner tellement que la pression de radiation sera trop forte, et repoussera la matière qui tombait sur le trou noir. Il y a donc une luminosité maximale que peut avoir un trou noir en fonction de sa masse : c'est la limite d'Eddington, proportionnelle à sa masse.
Au mieux, si un trou noir avale de la matière à la limite d'Eddington en permanence, il mettra un milliard d'années à atteindre une masse de 300 millions de masses solaires. Mais en fait, c'est une limite idéale, la matière autour du trou noir n'est pas toujours disponible à la limite d'Eddington. Le trou noir doit forcément jeûner, même s'il est au centre d'un amas d'étoiles. Les étoiles qui passent très près du trou noir, peuvent être détruites par ses forces de marée, réduites à l'état de gaz, et avalées ensuite par le monstre. Mais les étoiles avec la trajectoire voulue, passant très près du trou noir, vont disparaître très vite, et il va falloir attendre que d'autres étoiles soient déviées de façon gravitationnelle pour occuper à nouveau ces trajectoires. Ceci prend un temps de l'ordre du temps de diffusion des étoiles : quelques centaines de millions d'années. Le taux de croissance du trou noir est donc limité par la diffusion : plusieurs milliards d'années, presque un temps de Hubble, pour obtenir la masse aujourd'hui observée dans les quasars.
Statistique des quasars
On connaît aujourd'hui des dizaines de milliers de quasars. Pour expliquer leur nombre, il y a deux scénarios possibles :
- Soit de rares galaxies ont un trou noir supermassif en leur centre, et rayonnent continuellement sous forme de quasars ;
- Soit le phénomène est très répandu, les trous noirs sont moins massifs, mais ne rayonnent que pendant une durée très limitée.
Les observations permettent d'éliminer le premier scénario, car si c'était toujours les mêmes objets, qui rayonnent et donc grossissent en masse, on devrait observer des trous noirs encore plus massifs que ceux que l'on voit aujourd'hui. D'autre part, les trous noirs manquent forcèment d'aliments, lorsqu'ils ont tout avalé dans leur voisinage. C'est plutôt le deuxième scénario qui est privilégié : il existe un trou noir massif dans pratiquement toutes les galaxies aujourd'hui, mais la durée d'activité est de quelques dizaines de millions d'années.
Dans notre Galaxie, un trou noir de 2 millions de masses solaires a été mis en évidence par le mouvement propre des étoiles dans le voisinage du noyau. L'étude de plusieurs galaxies proches, avec une grande résolution spatiale, a permis de révéler une relation de proportionnalité entre la masse du trou noir, et la masse du bulbe des galaxies (ou du sphéroïde, s'il s'agit d'une elliptique). La masse du trou noir est égale à 0.2% de la masse du bulbe.
Manifestations de l'activité
Comment se manifeste l'activité des noyaux? Les raies d'émission ne ressemblent pas à celles émises par une galaxie normale : les largeurs en vitesses sont énormes, de plusieurs milliers de km/s. Plus on s'approche du trou noir, plus les vitesses seront relativistes. D'autre part, l'énergie des photons émis est très grande, par exemple des rayons X très durs, bien plus durs que ne peuvent le faire les étoiles, les supernovae, et les ondes de choc associées. De plus, certains noyaux émettent des jets de gaz ionisé à des vitesses quasi relativistes. ces jets sont bien visibles en continuum radio, ils sont très étendus, jusqu'à des distances de 300 000 années-lumière, soit 10 rayons galactiques (cf. figure 9). La variabilité très courte des émissions, de quelques jours, ou quelques mois, est un reflet de la taille de la région émettrice (quelques jours ou quelques mois-lumière), et révèle aussi un noyau actif, ou un disque d'accrétion autour d'un trou noir massif.
Figure 9 : Certains noyaux actifs sont caractérisés par l'éjection de jets de plasmas très rapides, qui peuvent aller très loin dans l'espace, à plus de 10 fois le rayon de la galaxie qui les héberge. Ici les jets de la galaxie Cygnus A, observés en continuum radio avec le VLA (Very Large Array, USA), d'après Perley et al. (1984, ApJ 285, 35).
Notons qu'à plusieurs reprises, la vitesse des jets nous est apparue supérieure à celle de la lumière : on parle de jets superluminiques. Mais ce n'est qu'apparent, bien sûr, c'est un effet d'optique : le jet venant vers nous, les effets relativistes l'amplifient énormément. Et surtout la différence des temps d'arrivée des photons est du même ordre que le temps de traversée du jet. Le matériel au bout du jet émet de la lumière qui arrive plus vite vers nous, et la progression du jet semble aller plus vite que la lumière.
Formation des galaxies et des trous noirs massifs
Aujourd'hui, la grande sensibilité apportée par les grands instruments permet d'observer de plus en plus profondément, des galaxies de plus en plus lointaines.
Remonter dans l'espace revient à remonter dans le temps, car la lumière qui nous parvient de ces galaxies lointaines a été émise il y a très longtemps, lorsque l'Univers était bien plus jeune (cf figure 10). On peut remonter jusqu'à des redshifts (ou décalages vers le rouge) de z=5-6 avec le télescope spatial Hubble et les grands télescopes optiques de la classe des 10m (Keck, VLT, Gemini..). Ceci équivaut à remonter à une époque où l'Univers n'avait que 5% de son âge ! On s'aperçoit alors que le nombre de galaxies était plus grand autrefois. Les galaxies se forment par interaction et fusion, d'une façon hiérarchique. Leur nombre a diminué au moins d'un facteur 10, par rapport aux galaxies naines, très riches en gaz, très nombreuses à grand décalage spectral. Ces dernières sont les briques de base des galaxies géantes observées aujourd'hui.
Figure 10 : Photo du ciel très profonde obtenue par le télescope spatial Hubble (Hubble Deep Field North). La région ne contient pas d'étoiles de notre propre galaxie, mais que des galaxies plus ou moins lointaines. Ceci permet de remonter dans le temps, et d'observer l'Univers tel qu'il était jusqu'à 5% de son âge.
Le scénario de formation le plus plausible actuellement fait intervenir des halos de matière noire qui se forment de façon hiérarchique, eux aussi entrant en coalescence, et formant progressivement des entités plus massives. La matière baryonique (ordinaire) est attirée vers le fond des puits de potentiel par la gravité des halos noirs. Par dissipation le gaz forme un disque galactique, et les étoiles commencent à se former à partir du gaz.
Dans les amas de galaxies, l'évolution des galaxies est plus rapide, il y a plus d'interactions et le réservoir de gaz dans les parties externes est balayé. Celui-ci forme le milieu intra-amas, inter-galactique. Ce gaz très chaud est observé par les rayons-X qu'il émet (plusieurs millions de degrés).
La fusion des galaxies entraîne la formation de sphéroïdes, qui possèdent beaucoup moins de rotation que les disques galactiques. Selon le rapport de masse entre les galaxies qui fusionnent, on peut avoir :
- soit une galaxie elliptique, si les masses sont comparables,
- soit une galaxie spirale avec un bulbe, si la masse du compagnon est inférieure au 1/3 de la galaxie principale.
Dans tous les cas, la fusion entraîne encore plus de gaz vers le centre; une partie engendre une flambée de formations d'étoiles ( starburst), et quelques pourcents viennent alimenter le trou noir massif central, qui existe dans pratiquement toutes les galaxies.
Trous noirs binaires
Dans ce scénario de formation de galaxies par fusion, une galaxie géante aujourd'hui est le résultat de plusieurs (environ 10) fusions durant le temps de Hubble. On s'attend donc à trouver un grand nombre de fusions de trous noirs massifs (cf figure 11). Lorsque les galaxies fusionnent, les deux trous noirs au centre tombent vers le centre commun de potentiel, par friction dynamique. Puis ils forment un système binaire, stable pendant un certain temps. Leur temps de fusion totale dépend beaucoup de la densité d'étoiles au centre. Les trous noirs binaires ne peuvent perdre de l'énergie qu'en capturant une étoile, formant un système à trois corps, qui va ensuite éjecter l'étoile. Celle-ci emporte du moment angulaire et de l'énergie, et permet aux deux trous noirs de se rapprocher. Mais peu à peu, les étoiles dans les bonnes trajectoires ont toutes été éjectées, et il faut à nouveau compter sur le temps de diffusion des étoiles (quelques centaines de millions d'années) pour rapprocher les trous noirs. Toutefois, si une autre fusion entre galaxies survenait pendant ce temps, on aurait un système à 3-corps formé de trois trous noirs, et l'un d'entre eux serait éjecté dans l'espace inter-galactique par effet de fronde. Peu à peu les trous noirs massifs se retrouvent-ils à errer isolés dans l'espace inter-galactique ?
En fait, la binaire de trous noirs n'est pas exactement centrée, mais plutôt effectue des petites oscillations dans le centre, ce qui lui permet de capturer plus d'étoiles, et de fusionner plus vite. Ceci permet d'éviter la fuite des trous noirs entre les galaxies, et explique bien la présence de trous noirs dans pratiquement toutes les galaxies.
Figure 11 : Lorsque deux galaxies à noyau actif fusionnent, les trous noirs massifs au centre vont finir par fusionner, additionnant leur masse. Ici l'interaction entre deux noyaux actifs, possédant chacun un jet radio (contours VLA), d'après Owen et al. 1985 (ApJ 294, L85).
Histoire de la formation des étoiles
Dans le passé, les galaxies étaient plus nombreuses, elles possédaient plus de gaz, et le temps dynamique était plus court. En effet la densité comobile était plus grande, du fait de l'expansion. L'échelle de temps était beaucoup plus rapide. On prévoit alors un maximum de fusions de galaxies à z=2 (t = 4 milliards d'années environ). De même l'essentiel de la formation d'étoiles, et de l'activité des quasars a dû arriver à cette époque. Ceci correspond parfaitement aux observations (figure 12).
Figure 12 : Histoire de la formation d'étoiles dans l'Univers. Le taux de formation d'étoiles a traversé un maximum vers l'époque z=2, i.e. lorsque l'Univers avait 20% de son âge actuel (d'après Madau et al. 1996, MNRAS 283, 1388).
En conclusion, la moisson d'observations récentes à permis de se rendre compte que les galaxies sont des systèmes en pleine évolution, toujours instables. Les disques se forment en premier, mais se détruisent aussi très vite, lors de l'évolution séculaire, ou des interactions et fusions entre galaxies. Les bulbes ou sphéroïdes se forment progressivement. Ils représentent l'état final de la concentration de masse, il sont formés de vieilles étoiles, et ne possèdent pas de gaz. Une galaxie ayant épuisé tout son gaz est en quelque sorte figée dans son évolution. Il faudra une accrétion de gaz extérieur pour aller plus loin (fusion entre galaxies par exemple).
Les trous noirs massifs se forment par le même mécanisme que les bulbes grossissent : par chute du gaz et de la matière au centre, par évolution continue des disques (barres, spirales) et par les perturbations extérieures (fusions). Il est alors naturel de trouver une relation de proportionnalité entre la masse des trous noirs et la masse du bulbe dans chaque galaxie. Les galaxies évoluent à différentes vitesses, beaucoup plus rapide dans les amas de galaxies, stimulées par les interactions entre les voisins.

 

VIDEO            CANAL  U              LIEN

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

ASTROPHYSIQUE

 

Texte de la 528 ème conférence donnée à lUniversité de tous les savoirs le 15 juin 2004


Le Supermonde et les Dimensions Cachées de lUnivers
par Pierre Fayet
Les symétries et leur rôle


Particules, Interactions et Symétries
Dans lexposé précédent, Gerard t Hooft nous a initié au monde microscopique des particules élémentaires et des interactions fondamentales. Celui-ci appartient aussi à lUnivers dans son ensemble, dont lobservation peut nous fournir certaines des clés nécessaires à notre compréhension.
On va discuter ici de particules, et dinteractions entre ces particules. Dans ce monde qui semble fort complexe, une notion vient mettre de lordre, celle de symétrie, absolument fondamentale. Les particules narrivent pas seules, mais sont rangées en des ensembles que lon appelle des multiplets. Elles existent en quelque sorte en plusieurs exemplaires aux propriétés semblables ou voisines, reliés par des symétries, faisant intervenir des transformations permettant de passer dun état dune particule à un autre état de particule. Par exemple dun état proton à un état neutron, ou dun neutrino à un électron. Ces symétries jouent un rôle déterminant dans le monde des particules et des interactions, en établissant des liens entre particules, des liens entre interactions, et même, comme nous allons le voir, en étant directement responsables de lexistence des diverses sortes dinteractions.
Nous allons parler des particules, et des constituants de la matière en premier lieu. De la matière ordinaire bien sûr, faite délectrons, et de protons et de neutrons, eux-mêmes constitués de quarks. Mais il existe aussi dautres sortes de particules, dautres formes de matière. Il y a déjà lantimatière, on le sait depuis longtemps. La théorie quantique des champs nous dit que les particules doivent être accompagnées dantiparticules de même masse, mais dont les autres caractéristiques comme la charge électrique sont opposées. Nous verrons aussi, avec la supersymétrie qui constituera lessentiel de notre sujet, que les particules peuvent avoir des sortes de doubles, reflets par supersymétrie des particules ordinaires, que lon appelle aussi des superpartenaires. Parmi eux, les neutralinos pourraient constituer la mystérieuse Matière Sombre qui semble le principal composant de la matière de notre Univers.
Nous allons aussi parler des interactions entre particules, responsables des forces qui sexercent entre elles, de leurs collisions (qui peuvent, ou non, en changer la nature), et le cas échéant de leurs processus de désintégration. Elles sont de quatre types : fortes, électromagnétiques, faibles et gravitationnelles. Ces dernières, bien que très importantes au niveau macroscopique, sont en fait extrêmement faibles, lorsque lon considère leur action entre particules prises individuellement. On sera souvent amenés à les ignorer ou à les négliger, au moins dans une première étape.
Les interactions électromagnétiques nous sont assez familières, et incluent notamment tous les phénomènes qui concernent la lumière, les ondes radio, les rayons X, etc. Les interactions fortes font que les quarks se regroupent, trois par trois, pour former les protons et les neutrons, ceux-ci sassociant ensuite en noyaux datomes. Les interactions
faibles sont elles aussi essentielles, en permettant notamment les réactions nucléaires de fusion qui alimentent le Soleil en énergie.
Nous avons appris que chacune de ces quatre sortes dinteractions fondamentales se trouve associée à lexistence de symétries particulières : symétries de jauge dans le cas des interactions fortes, électromagnétiques et faibles, ou symétries despace-temps, à la base de la relativité, pour ce qui est de la gravitation. Mais peut-être y a-t-il encore dautres sortes dinteractions, dont lexistence nous aurait échappé ? Et quen utilisant des généralisations successives de la notion de symétrie, on sera amenés à postuler lexistence de nouvelles particules, et de nouvelles formes dinteractions, qui nous seraient encore inconnues.
Pour aller plus loin : Supersymétrie, et dimensions supplémentaires
Ces interactions et ces symétries sont à loeuvre dans un univers. Notre expérience nous conduit à le représenter en trois dimensions, correspondant par exemple à la longueur, à la largeur et à la hauteur des objets qui sy trouvent. Mais on a quelques raisons de penser quil pourrait exister aussi des dimensions supplémentaires, qui nous seraient cachées. Comment celles-ci pourraient-elles se manifester, sont-elles grandes ou petites, et ny en aurait-il pas dencore plus bizarres, pour lesquelles la notion intuitive de distance perdrait sa signification ? Nous y reviendrons un peu plus loin.
Lessentiel de notre sujet va être la supersymétrie. Jai indiqué en sous-titre Une nouvelle symétrie de la physique des particules et des interactions fondamentales ?, avec un point dinterrogation pour rappeler que ce que lon va dire là-dessus demeure hypothétique. Ces théories ont été développées depuis un certain temps déjà, remontant aux années 1970. Elles peuvent dans lavenir se révéler justes, ou non. Il se peut que lon fasse fausse route, que lon soit sur une mauvaise piste. Mais cette piste des symétries sest montrée extrêmement fructueuse dans le passé et jusquà présent, et il est naturel de tenter de la poursuivre un peu plus loin, lavenir se chargeant de juger de la pertinence de cette démarche.
Nous verrons que lune des conséquences les plus remarquables de la supersymétrie, lorsque nous lappliquerons au monde des particules élémentaires, va être que celles-ci doivent avoir des sortes de doubles, ou superpartenaires. Si tel est le cas la moitié au moins du monde des particules aurait échappé à notre observation ! Lun des sujets essentiels de la physique des particules et interactions fondamentales aujourdhui, et aussi de la physique de lUnivers, consiste à tenter de mettre en évidence ces nouveaux objets, sils existent. Un indice peut-être ? La Matière Sombre souvent appelée aussi matière noire de lUnivers pourrait être constituée, pour lessentiel, de ces nouvelles particules dont lexistence est ainsi postulée par les théories de supersymétrie.
Symétries despace-temps, et symétries de jauge
Avant de rentrer véritablement dans le vif du sujet, nous allons revenir sur la notion de symétrie sur laquelle la physique des particules et interactions fondamentales sappuie depuis tr`es longtemps, et sur un certain nombre de ses généralisations successives. Le premier exemple de symétrie auquel on pense généralement est la symétrie par rapport à un miroir : on considère un objet et on le regarde dans le miroir. Lobjet et son image nous apparaissent alors comme ayant essentiellement les mêmes propriétés, obéissant lun et lautre aux mêmes lois physiques du moins tant que lon ne sintéresse pas aux interactions faibles, qui régissent notamment les désintégrations radioactives de certaines particules, ou de certains noyaux atomiques. Il sagit là dune symétrie, dite discrète, qui échange les rôles de la main gauche et de la main droite, et donc des deux orientations, gauche et droite, de lespace.
On peut aussi considérer dautres symétries analogues, comme le renversement du sens du temps qui échangerait le passé et le futur. Et se demander si, ou plutôt dans quelle mesure, les lois physiques fondamentales sont bien invariantes par rapport à lopération qui consisterait à échanger les rôles du passé et le futur.
Dautres symétries despace-temps nous sont aussi familières, comme les translations et les rotations. On prend un objet, on peut le déplacer, et on sait que les lois physiques fondamentales sont (bien sûr dans un espace-temps qui serait par ailleurs vide) invariantes par translation, dans lespace comme dans le temps. En labsence dobjets extérieurs la physique ici est la même que la physique là ; et la physique dhier et celle daujourdhui, ou de demain, sont aussi les mêmes. Les lois physiques sont, de plus, invariantes par rotation : dans lespace (vide), il ny a pas de direction privilégiée. Toutes ces symétries sont des symétries despace-temps, et lon sera amenés à compléter cet ensemble en y rajoutant les transformations de Lorentz, qui sont à loeuvre en relativité et permettent dy relier lespace et le temps.
Il y a encore dautres symétries fondamentales, qui sont les symétries de jauge. On les rencontre déjà en électromagnétisme. Lorsque lon considère un champ magnétique , on peut lexprimer à laide dune certaine expression mathématique appelée potentiel vecteur ( ). Mais il y a plusieurs expressions possibles pour , en fait une infinité, qui toutes permettent de décrire le même champ magnétique. Laquelle choisir, et lune dentre elles devrait-elle être privilégiée ? Il nen est rien. Il y a là un principe dit dinvariance de jauge, selon lequel la physique ne dépend pas du choix particulier des expressions mathématiques utilisées pour la décrire.
Ce principe général est à loeuvre dans les symétries entre particules et entre interactions, notamment dans les théories dites de Yang et Mills, généralisations de lélectromagnétisme, qui vont permettre de décrire à la fois les interactions fortes, dune part, et les interactions électromagnétiques et faibles, dautre part.
Relativité, et gravitation
Mais revenons aux symétries despace-temps, en rappelant que, dans le cadre de la relativité, lespace et le temps jouent des rôles analogues. Le temps, qui peut être mesuré par des horloges en mouvement, les unes par rapport aux autres, perd alors son caractère absolu, universel, et devient relatif au référentiel choisi pour le mesurer.
Les transformations de Lorentz, qui permettent de transformer un objet au repos en un objet en mouvement (ou de passer dun référentiel considéré comme au repos à un autre en mouvement) sont alors capables de relier les coordonnées despace et de temps. Au lieu de considérer séparément lespace et le temps, on est conduit à les traiter comme formant une entité unique, et lon décrit les événements comme associés à des points (ou des quadrivecteurs) dans cet espace-temps à quatre dimensions, trois despace et une de temps.
La théorie de la relativité nous dit alors que les lois physiques fondamentales sont invariantes non seulement par rapport aux translations, dans lespace comme dans le temps, aux rotations dans lespace, mais aussi par rapport aux transformations de Lorentz qui apparaissent un peu comme des rotations généralisées de lespace-temps. Il sagit là de la théorie de la relativité dite restreinte.
Celle-ci a ensuite été généralisée par Einstein pour létendre dun espace-temps plat à un espace-temps courbe. Lorsque lon décrit la physique dans un tel espace-temps courbe, comme le fait la théorie de la relativité générale, la force de gravitation apparaît comme une force dinertie, que lon peut faire disparaître en chaque point par le choix dun référentiel approprié, en chute libre. Ceci nécessite au passage luniversalité de la chute libre, cest-à-dire que le mouvement de chute libre dun corps soit bien indépendant de sa composition (ce qui sexprime en un autre langage par lidentité de la masse inerte et de la masse gravitationnelle). Une particule soumise à une force de gravitation apparaît alors comme allant (localement) tout droit, mais dans un espace-temps qui, lui, est courbe. Et ce qui courbe lespace-temps, ce sont les masses, ou plus précisément les densités dénergie, et même dénergie-impulsion, comme lexpriment les équations dEinstein de la relativité générale.
Superespace, et dimensions supplémentaires

 

DOCUMENT          CNRS              LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon