|
|
|
|
 |
|
L’infection de certains neurones par le SARS-CoV-2 pourrait être à l’origine de symptômes persistants |
|
|
|
|
|
L’infection de certains neurones par le SARS-CoV-2 pourrait être à l’origine de symptômes persistants
15 SEP 2023 | PAR INSERM (SALLE DE PRESSE) | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE
Image illustrant l’infection par le SRAS-CoV2 (immunoréactivité pour la protéine S en blanc) dans les neurones olfactifs exprimant la protéine marqueur olfactive (OMP, en rouge) dans l’épithélium nasal humain. ©Vincent Prévot/Inserm
Les conséquences sur le cerveau d’une infection par le SARS-CoV-2, responsable de la Covid-19 sont de plus en plus documentées par la littérature scientifique. Des chercheurs et chercheuses de l’Inserm, du CHU de Lille et de l’Université de Lille, au sein du laboratoire Lille neuroscience et cognition, en collaboration avec leurs collègues de l’Imperial College London, se sont intéressés plus spécifiquement aux conséquences de cette infection sur une population précise de neurones connue pour réguler la reproduction sexuelle via l’hypothalamus (les neurones exprimant l’hormone GnRH). Leurs résultats, suggèrent que l’infection peut entraîner la mort de ces neurones et être à l’origine de certains symptômes qui persistent dans le temps. Les résultats de cette étude sont publiés dans la revue eBioMedicine.
De nombreuses études scientifiques ont documenté les conséquences sur le cerveau d’une infection au SARS-CoV-2. Parmi les effets qui ont été identifiés, une proportion significative d’hommes présente des taux de testostérone faibles qui persistent dans le temps. Au-delà de quatre semaines, on peut parler alors de « Covid long ».
Une équipe de recherche de l’Inserm, du CHU et de l’Université de Lille, étudie depuis de nombreuses années le rôle de certains neurones exprimant une hormone appelée GnRH (Gonadotropin-Releasing Hormone). Ces neurones contrôlent depuis l’hypothalamus tous les processus associés aux fonctions reproductrices : la puberté, l’acquisition des caractères sexuels secondaires et la fertilité à l’âge adulte.
Ces mêmes scientifiques avaient par exemple précédemment identifié qu’un dysfonctionnement des neurones à GnRH dans un modèle animal de la trisomie 21, pouvait avoir des conséquences sur l’altération des fonctions cognitives associées à cette maladie.
Dans une nouvelle étude, ils ont voulu tester l’hypothèse selon laquelle une infection par le SARS-CoV-2 peut avoir des conséquences délétères sur cette population de neurones régulateurs de la reproduction.
Le virus pénètre les neurones à GnRH et altère leurs fonctions
En s’appuyant sur les dosages hormonaux (testostérone et LH) réalisés trois mois et un an après l’infection chez un petit groupe de 47 hommes[1], les scientifiques ont constaté que le contact avec le virus pouvait altérer les fonctions des neurones à GnRH, entraînant une chute du taux de testostérone chez certains patients quelques temps après l’épisode infectieux.
Les scientifiques ont ensuite voulu vérifier si l’infection des neurones à GnRH et les anomalies hormonales observées après l’infection pouvaient être associées à des déficits cognitifs. Ils ont pour cela répertorié les symptômes cognitifs rapportés par les patients de la cohorte, qui ont subi des tests approfondis à 3 mois, puis 1 an après l’infection.
Résultats : la proportion de patients signalant des troubles de la mémoire ou de l’attention, quelle que soit leur fréquence ou leur gravité, mais aussi des difficultés de concentration, avait tendance à être légèrement plus élevée chez les patients qui présentaient des dosages hormonaux anormaux, caractérisés par une baisse du taux de testostérone.
« Bien qu’il s’agisse de mesures effectuées sur un petit échantillon de patients et uniquement masculins, ces résultats sont très intéressants et mériteraient d’être approfondis dans le cadre d’autres études menées à plus grande échelle », explique Waljit Dhillo, professeur à l’Imperial College London, co-dernier auteur de cette étude.
Pour compléter leurs analyses, les chercheurs ont enfin étudié le cortex de patients décédés des suites de la Covid-19. Ils ont identifié la présence du virus au niveau de l’hypothalamus et ont constaté la mort d’une partie de la population de neurones à GnRH.
« Ces résultats peuvent être inquiétants sur plusieurs points au regard du rôle de ces neurones dans la reproduction et de leur implication dans certaines fonctions cognitives. Ils pointent la nécessité d’optimiser et de généraliser le suivi médical des personnes atteintes de symptômes persistants suite à une infection par la Covid-19 », conclut Vincent Prévot, directeur de recherche à l’Inserm, co-dernier auteur de cette étude.
L’étude incite aussi à poursuivre les travaux sur les conséquences neurologiques du Covid long.
Ce projet de recherche a bénéficié d’un financement de l’ANRS-MIE.
[1]Ces données ont été collectées dans le cadre d’une étude plus large évaluant les fonctions surrénaliennes et thyroïdiennes après une infection par le Sars-CoV-2 : https://pubmed.ncbi.nlm.nih.gov/34008009/
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Les phéromones, acteurs de la plasticité comportementale |
|
|
|
|
|
Les phéromones, acteurs de la plasticité comportementale
11 septembre 2017 RÉSULTATS SCIENTIFIQUES
Les phéromones sont des éléments clés de la communication animale: elles sont libérées pour transmettre des messages spécifiques tels que l'attraction sexuelle, l'agression, la reconnaissance de congénères, etc., aux membres d’une même espèce. Les équipes de Martin Giurfa au Centre de recherches sur la cognition animale et de Patrizia d'Ettorre au laboratoire d'Ethologie expérimentale et comparée, ont découvert une nouvelle fonction insoupçonnée des phéromones chez l'abeille domestique. En dehors des messages spécifiques qu'elles véhiculent, les phéromones sont capables de changer la façon dont un animal évalue la valeur subjective d'un aliment souhaité et donc sa capacité à apprendre sur cet aliment. Cette étude a été publiée le 29 août 2017 dansla revue Scientific Reports.
L'analogie entre les colonies d'insectes sociaux et les organismes multicellulaires a été établie pour la première fois il y a un siècle, lorsque les colonies d'insectes ont été appelées «superorganismes». En parfaite similarité avec les organismes multicellulaires, qui utilisent des hormones circulantes pour la coordination de leurs cellules, les insectes sociaux utilisent des phéromones, des molécules hautement volatiles agissant comme messagers chimiques pour coordonner des centaines voire des milliers d'individus au sein d’une colonie. Les phéromones sont des éléments clés de la communication animale: elles sont libérées pour transmettre des messages spécifiques tels que l'attraction sexuelle, l'agression, la reconnaissance de congénères, etc., aux membres d’une même espèce. Avec plus de 50 phéromones différentes décrites à ce jour, les abeilles se distinguent assurément des autres insectes sociaux par leur système de communication sophistiqué basé sur ces molécules chimiques.
Les chercheurs de l'équipe de Martin Giurfa (CNRS, Université de Toulouse) et de Patrizia d'Ettorre (Université Paris 13), ont découvert une nouvelle fonction des phéromones de l'abeille qui change la vision traditionnelle affirmant que ces substances ne sont que des messagers chimiques très spécifiques. Les travaux, dirigés par David Baracchi, ont permis de découvrir que les phéromones peuvent affecter la prise de décisions et l'activité de recherche de nourriture au-delà des messages spécifiques qu'ils véhiculent: en fait, elles peuvent changer la façon dont un animal évalue la valeur subjective d'un aliment souhaité et donc sa capacité à apprendre sur cet aliment.
Les chercheurs ont exposé des abeilles ouvrières soit à une phéromone appétitive, qui dans la nature sert à marquer des sources de nourriture profitables, soit à des phéromones d'alarme, qui signalent des situations aversives. Après quelques minutes, lorsque la phéromone n'était plus présente dans l'environnement, ils offraient une récompense de saccharose aux abeilles et évaluaient leur volonté d'ingérer cette nourriture en utilisant l'extension réflexive des parties buccales (PER) survenant chez cet insecte lorsque ses antennes sont stimulées par des solutions de saccharose.
Les chercheurs ont observé que les phéromones induisent des changements significatifs dans la réactivité et l'habituation au saccharose (une forme simple d'apprentissage appétitif), démontrant ainsi que les phéromones modulent la motivation des abeilles au-delà des messages qu’elles fournissent. Fait intéressant, la direction de cette modulation dépend de la valence positive ou négative des phéromones. Les phéromones d'alarme diminuent la motivation appétitive tandis que la phéromone appétitive, qui marque des ressources nutritives rentables, l'améliore. Ainsi, une phéromone d'alarme n'est pas seulement un message d'alarme, elle modifie la motivation globale d'un animal, y compris sa volonté d'accéder à une ressource nutritive et l’apprentissage des facteurs associés à cette ressource.
Ces résultats apportent une perspective nouvelle dans l'appréciation générale des effets des phéromones, habituellement considérés comme restreints au déclenchement de réponses stéréotypées, puisque les nouveaux travaux de David Baracchi montrent leur influence sur un apprentissage simple. Ils soulignent ainsi le rôle important des phéromones dans la plasticité comportementale des individus et des colonies.
Figure : L’extension du proboscis : réponse appétitive d’une abeille immobilisée à une récompense de solution sucrée ayant contacté ses antennes. Des abeilles ayant été exposées à des phéromones de signification différente changent leur comportement d’extension du proboscis montrant ainsi l’impact de ces phéromones sur l’évaluation de la récompense alimentaire reçue.
© Martin Giurfa
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
Premier film moléculaire en ‘slow motion’ et 3D d’une protéine membranaire, la bactériorhodopsine |
|
|
|
|
|
Premier film moléculaire en ‘slow motion’ et 3D d’une protéine membranaire, la bactériorhodopsine
28 décembre 2016 RÉSULTATS SCIENTIFIQUES
Une prouesse technique a permis à un consortium international incluant un chercheur de l’Institut de biologie structurale, de montrer comment la protéine bactériorhodopsine utilise la lumière pour transporter des protons à travers la membrane cellulaire pour créer un différentiel de charge qui peut ensuite être utilisé pour générer l’énergie nécessaire au fonctionnement de la cellule. Cette étude a été publiée le 23 décembre dans la revue Science.
La bactériorhodopsine est une protéine qui absorbe la lumière et transporte des protons à travers les membranes cellulaires, une fonction essentielle des systèmes biologiques. Les chercheurs se sont longtemps interrogés sur le mécanisme que la protéine utilise pour expulser des protons de façon unidirectionnelle, de l’intérieur vers l’extérieur de la cellule. Pour le découvrir, un consortium international de chercheurs a utilisé le laser à électrons libres SACLA localisé au Japon, qui produit un faisceau de rayons X un million de fois plus intense que ceux des sources synchrotron, pourtant déjà très intenses. Les rayons X de SACLA présentent la particularité d’êtres générés pendant un temps extrêmement court, un centième de milliardième de seconde (une dizaine de femtosecondes). Les rayons X sont utilisés pour déterminer la structure de protéines qui traversent le faisceau sous la forme de microcristaux au sein d’un jet de graisse.
Pour cette étude, les chercheurs ont utilisé une technique appelée cristallographie sérielle femtoseconde en temps résolu, avec laquelle ils ont enregistré des dizaines de milliers d’images de la bactériorhodopsine après un intervalle de temps variant entre la nanoseconde et la milliseconde suivant l’excitation de lumière verte. En analysant les données, ils ont pu décrypter le mécanisme qui fait que le protéine expulse des protons hors de la cellule, dans un milieu chargé donc plus positivement. A l’instar d’une pile, c’est ce différentiel de charges qui permet d’alimenter les réactions chimiques qui font vivre la cellule.
Antoine Royant, à l’Institut de Biologie Structurale à Grenoble, a contribué à l’analyse structurale des 13 structures d’états intermédiaires obtenues sur 5 ordres de grandeur d’échelle de temps, et à l’identification du mécanisme d’action de la protéine.
« Cette expérience nous a permis de confirmer les hypothèses proposées au début des années 2000 sur les premières étapes du mécanisme, mais surtout de visualiser en temps réel les différents mouvements d’atome au sein de la bactériorhodopsine et comprendre ainsi comment ils s’enchaînent » explique A. Royant. L’excitation lumineuse entraîne un changement de configuration du rétinal (une forme de la vitamine A), la molécule colorée située au cœur de la protéine. Ce changement force une molécule d’eau structurale à s’en aller, puis un ensemble de réarrangements structuraux de la protéine entraîne l’expulsion d’un proton du côté extracellulaire de la protéine.
« Nous avons enfin compris comment les changements au voisinage du rétinal empêchent le proton de retraverser la protéine. Ce résultat permet d’envisager de comprendre à un très grand niveau de détail le mécanisme de protéines, et donc d’être capables de les utiliser à notre profit » conclut A. Royant.
Figure : Microcristaux de bactériorhodopsine obtenus en phase cubique de lipides. Les cristaux sont injectés dans le faisceau du laser à électron libre SACLA, et illuminés par un laser vert déclenchant le photocycle de la protéine. Des clichés de diffraction sont enregistrés entre quelques nanosecondes et quelques millisecondes et permettent d’identifier les changements structuraux au sein de la protéine (formée de sept hélices transmembranaires) qui se déroulent au cours de la photoréaction, permettant à des protons d’être expulsés hors de la cellule de façon unidirectionnelle.
© Eriko Nango, Cecilia Wickstrand, Richard Neutze, Antoine Royant
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
ÉPIGÉNÉTIQUE |
|
|
|
|
|
Épigénétique
L'épigénétique (mot-valise de épigenèse et génétique2) est la discipline de la biologie qui étudie la nature des mécanismes modifiant de manière réversible, transmissible (lors des divisions cellulaires) et adaptative l'expression des gènes sans en changer la séquence nucléotidique (ADN)3. Alors que la génétique correspond à l’étude des gènes, l’épigénétique s’intéresse à une “couche” d’informations complémentaires qui définit comment ces gènes sont susceptibles d'être utilisés par une cellule.
Dans l'histoire de ce sujet d'étude, l'épigénétique est d'abord mise en évidence par la différenciation cellulaire puisque toutes les cellules d'un organisme multicellulaire ont le même patrimoine génétique, mais l'expriment de façon très différente selon le tissu auquel elles appartiennent. Puis ce sont les possibilités d'évolution d'un même œuf en mâle ou femelle chez les tortues, en reine ou ouvrière chez les abeilles, qui prouvent que des mécanismes peuvent lier des facteurs environnementaux et l'expression du patrimoine génétique.
En matière d'évolution, l'épigénétique permet d'expliquer comment des traits peuvent être acquis, éventuellement transmis d'une génération à l'autre ou encore perdus après avoir été hérités4. La mise en lumière récente de ces moyens épigénétiques d'adaptation d'une espèce à son environnement est, selon Joël de Rosnay en 2011, « la grande révolution de la biologie de ces cinq dernières années »5 car elle montre que dans certains cas, notre comportement agit sur l'expression de nos gènes6. Elle explique aussi le polyphénisme, par exemple les changements de couleur en fonction des saisons (tel le renard polaire qui devient blanc en hiver).
L'épigénétique a des applications possibles en médecine7, avec des perspectives thérapeutiques nouvelles notamment à l'aide d'« épi-médicaments »8, mais aussi en biologie du développement, agronomie ou nutrition.
Un même œuf fécondé d'abeille donnera soit une ouvrière s'il est pondu dans une cellule normale (hexagonale, au fond de l'image) où la larve est nourrie successivement à la gelée royale et à la bouille larvaire, soit une reine s'il est pondu dans une cellule royale (au premier plan) où elle est nourrie exclusivement à la gelée royale. C'est une sélection épigénétique de l'expression d'un même génome.
« Alors que la génétique correspond à l’étude des gènes, l’épigénétique s’intéresse à une “couche” d’informations complémentaires qui définit comment ces gènes vont être utilisés par une cellule ou… ne pas l’être8. »
« L'épigénétique est l'étude des changements d'activité des gènes — donc des changements de caractères — qui sont transmis au fil des divisions cellulaires ou des générations, sans faire appel à des mutations de l'ADN9. »
Par exemple, une même larve d'abeille deviendra une reine ou une ouvrière en fonction de la façon dont elle est nourrie10, et un même œuf de tortue peut éclore en mâle ou femelle en fonction de la température11. Il s'agit bien de l’expression du même code génétique global, mais des facteurs environnementaux ont sélectionné une expression plutôt qu'une autre, chacune étant disponible dans la « base de données » génétique.
Autrement dit, l'épigénétique concerne l'ensemble des mécanismes qui gouvernent la façon dont le génotype est utilisé pour créer un phénotype.
Principe
Par analogie, on peut rapprocher le couple génétique - épigénétique à l'écriture et à la lecture d'un livre.
« On peut sans doute comparer la distinction entre la génétique et l'épigénétique à la différence entre l'écriture d'un livre et sa lecture. Une fois que le livre est écrit, le texte (les gènes ou l'information stockée sous forme d'ADN) sera le même dans tous les exemplaires distribués au public. Cependant, chaque lecteur d'un livre donné aura une interprétation légèrement différente de l'histoire, qui suscitera en lui des émotions et des projections personnelles au fil des chapitres. D'une manière très comparable, l'épigénétique permettrait plusieurs lectures d'une matrice fixe (le livre ou le code génétique), donnant lieu à diverses interprétations, selon les conditions dans lesquelles on interroge cette matrice12. »
S'il existe une « base de données génétique », sa lecture s'effectue de façon éminemment diverse en fonction des modifications épigénétiques qui sont apportées au génome et à la chromatine. La transmission de l'héritage génétique s'accompagne également de celle d'un héritage épigénétique.
Mise en évidence
Article détaillé : différenciation cellulaire.
Sauf cas exceptionnel de mutation spontanée ou lors du développement des lymphocytes T, les cellules issues d'une seule cellule œuf et dupliquées par mitose partagent exactement le même patrimoine génétique. Pourtant un neurone, un globule blanc, ou encore une cellule épithéliale sont très différentes les unes des autres. « Cadre classique de l'épigénétique »9, cette différenciation cellulaire sur la base d'un même code génétique est un objet d'étude de la biologie du développement.
L'existence de phénomènes épigénétiques se trouve également illustrée par les différences physiques et biologiques constatées chez des animaux de laboratoire clonés13, ou chez les clones naturels que sont les vrais jumeaux (monozygotes) chez qui les empreintes épigénétiques sont beaucoup plus semblables à 3 ans qu'à 50 ans14. Une vaste étude est toujours en cours pour caractériser les différences entre jumeaux monozygotes15.
Si ces mises en évidence concernent principalement des êtres pluricellulaires Eucaryotes, des phénomènes épigénétiques ont aussi été mis en évidence chez des êtres unicellulaires aussi bien eucaryotes (par exemple la levure)16 que procaryotes17.
Histoire
En 1999, on met en évidence chez la linaire commune qu'une symétrie de ses fleurs (ci-dessus) se transmet sur plusieurs générations tout en restant réversible18. Il est question d'épimutation et non pas de mutation de l’ADN, rare et définitive.
Article connexe : Histoire de la pensée évolutionniste.
L'histoire de l'épigénétique peut se rapporter aux théories qui se demandent si la totalité des caractéristiques d'un individu est contenue dans l'œuf dont il est issu, aux théories de l'influence du contexte sur la génétique, ou encore à la mise en évidence moléculaire de ces mécanismes et de la réversibilité sur quelques générations d'un caractère, en particulier s'il est créé par l'environnement.
Par ailleurs, le terme ou des formes dérivées, telle que « épigénisation »N 1, sont également utilisés dans d'autres disciplines, par exemple la géologie.
Épigenèse
Le mot épigenèse remonte à Aristote qui nommait ainsi le développement d'un œuf informe de façon graduelle aboutissant à un organisme aux tissus différenciés. Cette théorie s'opposa au préformationnisme dont les tenants qui se réclamaient d'Hippocrate postulaient que l'être vivant préexistait en miniature dans le germe19. La théorie de l'épigenèse fut soutenue par l'embryologiste William Harvey qui postulait en 1651 dans son ouvrage intitulé Exercitationes de generatione animalium que « tout ce qui vit vient initialement d'un œuf20». À la même époque, la théorie préformationniste (ou préformiste) avait l'appui de Marcello Malpighi tandis que Nicolas Hartsoeker n’était pas préformiste, mais disséminationniste (hypothèse selon laquelle les germes des animaux sont incréés et dispersés à travers le monde)21.
Le débat entre épigénisme et préformationnisme fut une controverse majeure de la biologie au cours des siècles suivants, à travers notamment l'ovisme et l'animalculisme. Elle prendra fin au milieu du xixe siècle avec le développement de la théorie cellulaire et du rôle de la cellule, déjà envisagée par Buffon dans son Histoire naturelle générale et particulière22, dont la publication en volumes s'étend de 1749 à 1804.
Bénédict Morel propose, en 1857, une théorie de la dégénérescence expliquant que le « crétin des Alpes » était le dernier rejeton d’une longue lignée d'individus de plus en plus dégénérés, rejetant l'hypothèse d'un manque d'iode, pourtant confirmée depuis23.
Émergence de l'épigénétique
Andrew Fire et Craig Mello ont reçu conjointement le Prix Nobel de médecine 2006 pour leur travail sur l'interférence par ARN de Caenorhabditis elegans, ver chez qui l'attirance pour une odeur acquise par l'expérience peut être transmise sur 3 générations, et jusqu'à 40 si cette caractéristique acquise est renforcée24 ; et chez qui l'épigénétique est associée à des modifications de longévité, transmises d'une génération à l'autre25.
L'hypothèse de changements épigénétiques affectant l'expression des chromosomes a été émise par le biologiste russe Nikolaï Koltsov26. On attribue la paternité de l'épigénétique dans son sens moderne au biologiste et embryologiste Conrad Hal Waddington qui la définit en 194227 comme une branche de la biologie étudiant les implications entre les systèmes gènes + environnement et leurs produits donnant naissance au phénotype d'un individu. Cette idée venait combler des lacunes du modèle génétique postulant une équivalence unique entre phénotype et génotype qui ne pouvait expliquer tous les phénomènes liés à la différenciation cellulaireN 2. Il fut alors élaboré une théorie dans laquelle chaque cellule indifférenciée passait par un état critique qui serait responsable de son développement futur non uniquement lié à ses gènes, et pour cette raison qualifié d'épigénétique.
Dans les années 1960 et 1970, les expérimentations en biologie moléculaire fleurissent et donnent lieu à des Prix Nobel. En 1965, pour François Jacob, Jacques Monod et André Lwoff, qui mettent en évidence le rôle de l'ARN dans le contrôle génétique des synthèses enzymatiques et virales28 ; en 1975, pour David Baltimore et Howard Temin, qui mettent en évidence le phénomène de transcription inverse, la synthèse d'un brin d'ADN à partir d'une matrice ARN29. Ces mécanismes annexes à la génétique sont fondamentaux dans la compréhension et l'émergence de l'épigénétique, mais ils ne remettent pas en cause le modèle standard de compréhension de l'évolution, la théorie synthétique de l'évolution, où seuls le hasard des mutations génétiques et la sélection naturelle sont en cause.
Cette certitude scientifique reste inébranlable jusque dans les années 1990 pendant lesquelles cette théorie synthétique est confrontée au séquençage complet de plusieurs génomes ce qui suggère qu'elle doit être complétée, car la communauté scientifique n'y découvre pas la totalité des effets phénotypiques dont elle espérait l'explication. Cette difficulté inattendue remet au goût du jour la recherche de facteurs externes au génome30. L'épigénétique ainsi redéfinie revendique alors sa place comme prolongement et complément de la génétique classique, notamment dans le domaine de la nutrition31, de la reproduction32, et comme « aspect de la post-génomique » accompagnant la recherche dans son passage de l'étude du génome à celui de l'épigénome33.
Dans les années 1980, Robin Holliday nomme « hérédité épigénétique »34 l'hérédité mise en évidence chez les mammifères en 1999 par Emma Whitelaw (en)35. L'étape suivante qui se développe depuis les années 2000 est le travail sur le rôle de facteurs environnementaux sur l'expression génétique, comme en 2007 avec l'exposition au bisphénol A qui perturbe la méthylation de l'ADN de souris35. On étudie alors la possibilité de transmission des caractères acquis et le rôle des gamètes pour savoir s'ils peuvent conserver certains des marqueurs épigénétiques36.
Souvent polémique parce que non prévue par la théorie synthétique de l'évolution (bien que son principe ait été suggéré par Lamarck hors de toute connaissance génétique, et que Darwin lui-même laisse ouverte explicitement dans L'Origine des espèces la possibilité chez les chiens pointers d'effets cumulatifs du dressage), mais surtout parce que prises à tort par le grand public pour une réfutation de l'existant plutôt qu'un complément, ces études accordent volontiers à l'épigénétique un rôle davantage marginal pour expliquer quelques mécanismes d'adaptation et d'évolution des formes vivantes4.
D'autres dimensions du rôle de l'épigénétique sont aussi explorées comme son incidence sur les neurones pour stabiliser leurs connexions synaptiques, ce qui aurait un rôle sur la mémoire à long terme37 ; ou l'effet d'un stress infantile sur la sensibilité au stress à l'âge adulte par son effet sur la méthylation de l'ADN des récepteurs au glucocorticoïde38.
Codage épigénétique et évolution
Incarnation des idées évolutionnistes, Charles Darwin examine, contrairement au schéma simplificateur voulant l'opposer radicalement à Lamarck, l'idée que l'ensemble de l'organisme participe à l'hérédité, c'est ce qu'il nomme pangenèse en 186839,40.
Articles détaillés : Évolution, Histoire de la pensée évolutionniste et Transmission des caractères acquis.
L'épigénétique propose des explications au sujet de la transmission des caractères acquis4.
La sélection naturelle combinée à la génétique et au hasard des mutations étaient les seuls facteurs reconnus de l'évolution depuis August Weismann, et jusqu'à l'apparition de l'épigénétique dans les années 1990. Pourtant l'idée de la possibilité de transmettre des caractères acquis est abordée entre autres par Aristote, Jean-Baptiste de Lamarck, Charles Darwin, ou encore Ivan Mitchourine et Lyssenko.
Les caractères épigénétiques ne s'opposent pas aux théories génétiques associées à la sélection naturelle, mais les complètent. Ainsi, l'hérédité épigénétique « présente une plus grande sensibilité à l'environnement et une stabilité inférieure à celle des modifications de la séquence de l'ADN »41.
Selon Jean-Claude Ameisen qui vulgarise le sujet4, les expérimentations scientifiques dans le domaine se sont multipliées dans les années 2000 et 2010. Par exemple sur la transmission de caractères provoqués par le contexte, comme la présence d'une odeur24,42 ou un vécu traumatique. Chez la souris par exemple, un trauma précoce semble avoir des répercussions comportementales et métaboliques sur les générations suivantes, y compris si les descendants n'ont jamais été mis en contact avec les parents (fécondation in vitro et « mère porteuse »)43. Globalement l'étude de ce qui est transmis par les cellules séminales paternelles est utilisée afin d'isoler des caractères exclusivement innés44,45.
On a récemment montré (2017) chez le rat de laboratoire que l'exposition d'une mère à de l'atrazine (désherbant) au moment de la formation des gonades de ses embryons faisait que cette molécule (ou le stress induit in utero par cette molécule) pouvait reprogrammer durablement des cellules souches gonadiques et être source de problèmes épigénétiques dans les générations suivantes (susceptibilité aux maladies induites par l'atrazine, chez les mâles et les femelles)46.
De même, une chimiothérapie subie par un adolescent semble induire des effets épigénétiques (transmis donc à la descendance) via une modification qualitative du sperme (anomalies de l'ADN)47. C'est la 1re démonstration du fait qu'une exposition chimique précoce peut reprogrammer durablement l'épigénome des cellules souches spermatogènes. Les épimutations de la lignée germinale (cellules du sperme) identifiées suggèrent que la chimiothérapie peut changer l'hérédité épigénétique à la génération suivante47.
Mécanismes
Articles détaillés : biologie cellulaire et biologie moléculaire.
Le problème de la différenciation cellulaire (des cellules différentes ayant toutes le même génome) a trouvé son expression moléculaire lorsqu'il est apparu que les mêmes gènes n'étaient pas exprimés d'un type cellulaire à l'autre. Ainsi, la combinaison de gènes nécessaires et suffisants à spécifier un type cellulaire donné est en général exprimée exclusivement dans ce type cellulaire. Dans de nombreux cas, ces gènes restent exprimés tout au long de la vie du lignage cellulaire (l'ensemble des divisions au sein d'un même type cellulaire). Il est donc important de comprendre comment se mettent en place ces spécificités cellulaires (comment les gènes deviennent activés ou réprimés au cours du développement) mais également, comment cette expression est par la suite propagée au cours des divisions cellulaires (par exemple pour maintenir l'expression de gènes spécifiques de l'identité musculaire dans des cellules de muscle). Une grande partie des recherches en épigénétique se concentre justement sur les mécanismes de propagation temporelle de l'expression des gènes, plus particulièrement sur la transcription qui constitue le premier niveau de régulation de l'expression des gènes. En effet, même si l'expression des gènes peut être régulée à plusieurs niveaux (transcription, épissage, export nucléaire des ARNs, traduction, etc.) la transcription semble être le principal niveau de contrôle. L'état « épigénétique » d'une cellule semble dépendre principalement de deux variables: 1- les régulateurs transcriptionnels présents (par exemple, les facteurs de transcription) et 2- l'état de compaction de l'ADN, qui va déterminer la capacité des régulateurs transcriptionnels à moduler l'expression des gènes. En résumé, la question posée en épigénétique consiste à comprendre comment, à partir d'un même génome, peuvent se mettre en place et se propager au cours de divisions cellulaires des états transcriptionnels (exprimé versus non exprimé) distincts.
Transcription de l'ADN en ARN
Pour créer des structures biologiques à partir des gènes, l'ADN est d'abord recopié, transcrit en ARN.
Article détaillé : Transcription (biologie).
La transcription est la copie du code génétique de l'ADN en ARN. La double hélice de l'ADN est ouverte et une chaîne d'ARN complémentaire de l'ADN matrice est formée par le complexe de l'ARN polymérase II. Dans le cas des gènes dits « codants » (c'est-à-dire qui codent des protéines), cet ARN messager sert de matrice à la synthèse de protéines lors de l'étape de traduction. De nombreux gènes codent des protéines régulatrices appelées facteurs de transcription, dont la fonction est de moduler l'expression d'autres gènes.
Boucles d'autorégulation
Certains facteurs de transcription comme HNF4 et MyoD sont susceptibles d'activer leur propre expression, engendrant ainsi une boucle dite d'autorégulation48. Ce mécanisme par autorégulation permet la persistance temporelle de l'expression des gènes après que le stimulus déclencheur ait cessé d'opérer. Notamment, après la division cellulaire par méiose ou mitose, si le stimulus à l'origine de l'activation d'un gène est absent, les cellules filles peuvent hériter de cette activation (par exemple par la présence de ces facteurs de transcription). Une telle régulation qui opère en trans, est retrouvée chez des procaryotes (exemple du phage Lambda49) comme chez les eucaryotes. Chez les eucaryotes multicellulaires, ce mécanisme « trans-épigénétique » par autorégulation concerne de nombreux facteurs de transcription impliqués dans la spécification de l'identité cellulaire, et est à ce titre un mécanisme épigénétique majeur.
Structure de la chromatine
Schéma illustrant les modifications de la chromatine soit au niveau de l'ADN (méthylation) soit au niveau des histones.
Article détaillé : Chromatine.
La chromatine des eucaryotes, association entre l'ADN et les protéines histones, autour desquelles l'ADN s'enroule en bobine, constitue une couche régulatrice supplémentaire au contrôle de l'expression des gènes. Celle-ci peut être soit décondensée ou « ouverte » (euchromatine), permettant ainsi l'accès à la machinerie transcriptionnelle et à l'expression génique, soit condensée ou « fermée » (hétérochromatine), empêchant ainsi l'expression d'un gène.
Certaines régions du génome sont constamment dans un état chromatinien fermé, on parle d'hétérochromatine constitutive. C'est ainsi le cas des centromères et des télomères.
L'état de la chromatine dépend de plusieurs facteurs qui régulent sa structure en modifiant chimiquement l'ADN ou l'état post-traductionnel des protéines d'histones ou l'action de remodeleurs de la chromatine et de protéines chaperons.
Plusieurs mécanismes de propagation épigénétique de l'information utilisant des modifications de la chromatine se sont mis en place chez les eucaryotes.
Pour lire la suite, consulter le LIEN
DOCUMENT wikipédia LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante |
|
|
|
|
|
|