ecole de musique piano
     
menu
 
 
 
 
 
 

DIABÈTE DE TYPE 2

 

Paris, 12 juillet 2013


Certaines anomalies chromosomiques expliqueraient le risque accru de cancer dans le diabète de type 2


Certaines anomalies chromosomiques, de type pré-leucémiques, apparaissent surreprésentées chez des diabétiques de type 2 (DT2) souffrant de complications vasculaires. Cette découverte pourrait en partie expliquer la surmortalité par cancer chez les patients présentant un diabète de ce type. Ces résultats ont été mis en évidence par une équipe franco-britannico-qatarie coordonnée par le Professeur Philippe Froguel du laboratoire Génomique et maladies métaboliques (CNRS/Université Lille 2/Institut Pasteur de Lille), en collaboration avec des équipes rattachées à l'Inserm, à l'AP-HP et aux universités Paris Diderot et Paris-Sud1. Leurs travaux sont publiés le 14 juillet 2013 sur le site de la revue Nature Genetics.
Plus de 200 millions de personnes sont diabétiques dans le monde, et un diabétique sur trois souffre de complications vasculaires ou nerveuses. En 2012, deux études publiées dans Nature Genetics ont montré que de larges anomalies chromosomiques clonales en mosaïque (ACM)2 touchant de grandes portions de chromosomes (voire leur intégralité), apparaissaient dans l'ADN de cellules sanguines ou salivaires de certaines personnes vieillissantes. Ces travaux ont en outre suggéré que les ACM prédisaient le risque de cancers, notamment de leucémies, chez ces individus. La fréquence des ACM est en effet négligeable chez les individus de moins de 50 ans, alors qu'elles touchent 2% des personnes de plus de 70 ans chez qui elles décuplent le risque de cancers, notamment hématologiques.

Par ailleurs, le diabète de type 2 (DT2) est une maladie accélératrice du vieillissement et de ses maladies associées. Le DT2 est ainsi caractérisé par une augmentation marquée du risque de cancer, en particulier de cancers hématologiques comme la leucémie.

L'équipe de Philippe Froguel étudie depuis plusieurs années le DT2. Elle s'est demandée, si tout comme le grand âge, le DT2 entraînait l'apparition d'anomalies chromosomiques de type ACM dans les cellules sanguines. Pour cela, les chercheurs ont utilisé une technologie d'analyse génétique peu onéreuse qui repose sur des puces à ADN de quelques centimètres carrés sur lesquelles près d'un demi-million de mutations de l'ADN sont gravées. Chaque puce permet de « disséquer » entièrement le génome d'une personne.

Par cette méthode, les chercheurs ont évalué la présence d'ACM dans l'ADN sanguin issu de 7 437 individus de plus 50 ans, incluant 2 208 patients présentant un DT2. Résultat : la fréquence des porteurs d'ACM est 4 fois plus élevée chez les patients présentant un DT2 que chez les personnes témoins. De plus, les scientifiques ont confirmé un effet significatif de l'âge sur la présence d'ACM. De manière plus précise, ils ont montré que les porteurs diabétiques d'ACM affichaient un DT2 bien plus sévère – présence de complications vasculaires (aux yeux, aux reins ou au cœur) - que les non-porteurs. Malgré un poids plus bas que ces derniers, 70% des diabétiques porteurs d'ACM présentaient des  complications micro- et/ou macrovasculaires liées au DT2. La présence de certaines anomalies chromosomiques de type ACM pourrait ainsi en partie expliquer la forte fréquence de cancers chez les diabétiques de type 2.

Cette étude pourrait avoir des implications cliniques importantes, notamment pour détecter des états précancéreux chez certains diabétiques. Une analyse génétique des ACM utilisant les puces à ADN pourrait ainsi être proposée, principalement chez des patients avec un DT2 sévère associé à des complications vasculaires précoces. 

 

DOCUMENT                CNRS                LIEN

 
 
 
 

LES RISQUES DES NANOTECHNOLOGIES

 

LES RISQUES DES NANOTECHNOLOGIES


Point de vue pour le débat sur les nanotechnologies de Claude Weisbuch
Alors qu'elles étaient associées au départ à des espoirs de percées majeures dans la plupart des secteurs scientifiques, technologiques et économiques, les nanotechnologies deviennent l'objet de critiques radicales, certains en appelant même à un moratoire sur ces recherches. Il convient d'en débattre publiquement, en commençant par rappeler certains faits de base: 1. Le concept de nanotechnologie a pris son essor a cause du programme américain conçu pour redonner un élan aux disciplines physico-chimiques, laissées en plan aux USA par la priorité donnée à la biologie par le parlement américain. 2. Il faut rappeler la différence entre nanosciences et nanotechnologies. La nanoscience vise à l'exploration des phénomènes nouveaux apparaissant aux dimensions nanométriques, les nanotechnologies à leur mise en oeuvre dans des produits, ces phénomènes nouveaux ayant des origines physiques très variées. Une différence majeure apparaît immédiatement: alors qu'en nanoscience l'objet nanométrique est tout a fait digne d'intérêt, pour les applications il faut ramener ces propriétés nouvelles à l'échelle humaine pour l'utilisateur. Par exemple, une molécule unique peut être passionnante et faire l'objet de nombreux travaux de recherche, elle ne sert à rien toute seule. 3. Il n'y a pas de nanotechnologie définie en tant que telle, mais un patchwork de technologies très disparates suivant les domaines, et l'impact de l'échelle du nanomètre peut être très général ou très spécialise. Ayant défini très rapidement les nanotechnologies, on peut alors essayer d'analyser les incertitudes et risques associés aux nanotechnologies. Un premier point: en général, les risques associés aux aspects nouveaux des nanotechnologies sont bien sûr à traiter de la même manière que toute les autres activités scientifiques, technologiques, industrielles (qui ne sont pas en butée par rapport a ce qu'il conviendrait de faire, on peut en convenir !):protection des opérateurs lors de l'élaboration, identification des risques (dangerosité et exposition) des utilisateurs, recyclage des objets en fin de vie. La polémique sur la nanotechnologie/les nanotechnologies vient de ce que les critiques radicaux disent qu'elles ne sont pas de même nature que les autres, et n'exposent pas aux mêmes risques, et que le paragraphe ci-dessus ne s'applique pas: 1. on ne voit pas les objets des nanotechnologies. Dans la plupart des cas, en fait, ces objets ne seront pas accessibles sous leur forme divisée, nanométrique, mais dans un matériau système a l'échelle humaine, bien visible: circuit intégré en nanoelectronique, matériau composite à très haute résistance, matériau pour turbines à haute température, matrice nanométrique pour purification ou dessalement de l'eau, biopuces pour diagnostic médical, ... 2. Les éléments nanométriques vont partout, et donc dans des endroits ou ils sont dangereux, par exemple les organes du corps humain. Ceci n'est vrai lors de l'utilisation que pour les médicaments et les cosmétiques ou l'efficacité nouvelle est apportée par l'utilisation de la matière divisée. En ce qui concerne les médicaments, on est dans une situation ou il faut effectivement étudier ce qui serait des effets secondaires, puisque le médicament irait ailleurs que la ou on souhaite qu'il aille. Ceci est la définition même des effets secondaires des médicaments, et la longue procédure habituelle de validation des médicaments est tout à fait adaptée à prendre en compte la spécificité des nanomédicaments. En ce qui concerne les cosmétiques, les tests habituels sont certainement à faire évoluer, avant la mise sur le marché. Les académies britanniques, poursuivant les travaux de leur remarquable rapport sur les potentiels et risques de nanotechnologies, appelent de leurs voeux une publication transparente des tests effectués par et pour les industriels. C'est certainement une excellente recommandation (on pourrait aussi le réclamer pour d'autres produits....). D'autres possibilités d'exposition à des nanoparticules existent lors de l'élaboration et de la dégradation. Lors de l'élaboration, avant la mise en oeuvre dans des objets macroscopiques, il faut savoir que l'on sait manipuler des substances autrement plus dangereuses dans l'industrie. Le problème sera là de mettre en oeuvre des nouvelles réglementations adaptées tenant compte de la dangerosité et du risque d'exposition, avec aussi des moyens de mesure et de contrôle. Pour ce qui est de la dégradation, on entre ici dans un problème important, urgent, pour tous les secteurs industriels existant. Nous avons de fortes lacunes dans l'analyse du cycle de vie des matériaux. Les critiques radicaux nous affirment que les nanomatériaux ne se dégraderont pas dans l'environnement. Rien ne permet de l'affirmer, ni le contraire d'ailleurs (comme pour beaucoup de produits fabriques de manière massive aujourd'hui). Ce que la nature nous montre, par contre, c'est que la dégradation de nombreux matériaux minéraux ou biologiques n'aboutit pas à des nanostructures se promenant librement. Il y a dans ce domaine de la dégradation des matériaux (nanos ou non) un grand domaine scientifique à maîtriser. 3. Les nanotechnologies permettront d'entrer dans des domaines ou il ne faut pas aller ( la maîtrise du vivant et le rêve/cauchemar de l'immortalité, le contrôle de l'individu par des nanorobots qu'on lui injecte à son insu), ou peuvent permettre in-fine la destruction de la planète par l'émergence d'une intelligence collective de nanoobjets auto reproducteurs qui échapperaient au contrôle de leurs créateurs dans une furie destructrice. On est la en pleine science fiction, avec zéro science et 100% de fiction. Ces phantasmes viennent de non scientifiques (romanciers, princes héritiers, ...) ou de scientifiques non-spécialistes (extrêmement souvent des informaticiens et roboticiens)ne connaissant pas les bases de la biologie, de la neurologie, de la chimie, de la physique, de la théorie de l'information, qui permettent de montrer simplement l'impossibilité de telles réalisations. Les nanotechnologies permettront plus sérieusement d'accéder à des connaissances qui poseront des problèmes accrus en matière de protection des libertés individuelles, en facilitant très largement des techniques aujourd'hui encore limitées: empreintes génétiques des individus, fichage informatique, ... Ces dangers existent déjà aujourd'hui, et il faudra d'une part veiller a la bonne application des protections individuelles prévues, d'autre part à la définition de nouvelles protections lorsque des risques nouveaux apparaîtront (à ce sujet le comite national d'éthique montre que l'on ne peut émettre de recommandations que sur des questions bien identifiées, et pas sur des sujets généraux). Il est certainement utile d'en débattre.
Résumé de Claire Weill
Le risque de ne pas savoir de quoi on parle Il y a une quinzaine d'années, l'apparition de la microscopie à champ proche a permis de « voir » et manipuler des atomes individuels. Depuis, l'industrie de la microélectronique a poursuivi sa démarche de miniaturisation conduisant à la fabrication de matériaux structurés à des échelles inférieures au millième de millimètre (micron). Ces approches respectivement ascendantes et descendantes pour l'étude de la matière ont légitimement ouvert de nouvelles voies pour la recherche scientifique à l'échelle du nanomètre, le millionième de millimètre. Parallèlement des développements industriels ont mis à profit ces deux approches. Dès lors, plusieurs facteurs concourent à la très grande instabilité des discours sur les « nanotechnologies » et les « nanosciences » aujourd'hui dans les media, voire même des informations dans des publications dans des revues spécialisées, y compris scientifiques : la science dont il s'agit est récente et une grande partie des développements industriels sont encore balbutiants et pour une grande part confidentiels. Du fait des promesses considérables formulées sur les potentialités des nanotechnologies dans les domaines de la santé, de l'énergie, de l'environnement, du traitement de l'information…, des moyens financiers très importants et en forte croissance ont été investis dans la recherche fondamentale et appliquée dans tous les pays industrialisés depuis 2000. Ces promesses sont à la mesure des impasses dans lesquelles se trouvent nos sociétés, dont l'impasse écologique (épuisement des ressources fossiles et ponction excessive des ressources renouvelables, changement climatique…). Ces promesses démesurées se sont nourries d'abus de langages, de glissements sémantiques, d'assertions peu, voire pas du tout étayées. Ainsi, pour les besoins de la cause, des pans entiers de certains champs scientifiques ont été rebaptisés « nanos ». Les sciences physiques, chimiques biologiques et de l'information investissent désormais l'échelle du nanomètre. Ceci ne signifie pas pour autant l'automaticité de synergies entre les développements technologiques issus de leurs applications éventuelles. Or, un tel argument a été largement utilisé, en regroupant les synergies annoncées sous le vocable inapproprié et trompeur de « convergence ». Celui-ci a néanmoins le mérite d'évoquer la notion de projets, ceux des différents lobbies qui ont construit puis promu le développement des nanotechnologies. Notons en outre qu'il est absurde de penser qu'un champ scientifique se définirait par une échelle de taille, or on n'hésite pas à parler de « nanoscience ». Enfin, le nanomètre n'est pas, et de loin, la plus petite échelle de la matière investie historiquement par les scientifiques, qu'il s'agisse des physiciens des particules ou des chimistes moléculaires. Le fantasme de manipuler des atomes tels les éléments d'un lego a été véhiculé par plusieurs ouvrages de science fiction aux Etats-Unis à caractère prophétique, voire apocalyptique (E. Drexler, « Engines of creation », Engins de création, 1986 ; M. Crichton, « Prey », La proie, 2002). Ceux-ci ont donné l'illusion au lecteur qu'il pouvait comprendre, voire palper par la pensée ce qui se jouait à l'échelle atomique. Ce fantasme fait fi toutefois des lois de la physique quantique, qui compliquent considérablement la donne. Il introduit également une confusion entre l'approche scientifique et celle de l'ingénieur. Il apparaît donc urgent de déconstruire un certain nombre de discours et de s'attacher à davantage de rigueur dès lors que l'on évoque la science et les développements technologiques qui se déroulent à l'échelle du nanomètre, et ce dans l'intérêt de tous : politiques, citoyens, scientifiques et industriels. Les risques sanitaires, environnementaux et éthiques des nanomatériaux Les nanomatériaux présentent pour les autorités publiques des difficultés spécifiques. Déjà commercialisés dans des produits, les nano - objets sont susceptibles de diffuser dans l'environnement de multiples manières et sous des formes variées (nanoparticules libérées par exemple lors de l'usure de matériaux renforcés comme les pneus verts) et de pénétrer dans le corps humain par les voies respiratoires ou par la peau (crèmes solaires). Or, les modes de production des nanoparticules en laboratoire tout comme en milieu industriel sont loin d'être stabilisés. En outre, on ne dispose pas aujourd'hui de méthodes satisfaisantes permettant d'avoir accès à leurs caractéristiques structurales, réactives, et par voie de conséquences à leurs propriétés toxicologiques et écotoxicologiques. Par suite, nous sommes encore très loin d'une harmonisation des normes à l'échelle internationale, pourtant nécessaire dans le contexte de la mondialisation du commerce. Le cadre réglementaire européen couvre en théorie les nanoparticules, isolées ou insérées dans des produits, sans toutefois les prendre précisément en compte. En particulier, le règlement sur les substances chimiques en passe d'être adopté en Europe, REACH, pourrait encadrer les risques liés aux nanoparticules en introduisant des critères de dangerosité tels que la forte réactivité potentielle due à leur très grand rapport surface sur volume et la diffusion potentielle dans le corps humain. Cependant, les outils juridiques resteront inefficaces aussi longtemps que des techniques de caractérisation des nanoparticules sur l'ensemble de leur cycle de vie – encore une fois, de quoi parle-t-on ? – ne seront pas accessibles aux régulateurs. L'étude, et par conséquent l'optimisation ab initio, du cycle de vie de certaines substances chimiques ou nanoparticules se heurte également à des problèmes méthodologiques majeurs. A cet égard, la production et la diffusion non contrôlée de nanoparticules pourrait être source de dommages pour lesquels l'imputation de la responsabilité est difficile, faute de tracabilité possible. Le développement industriel contrôlé et responsable des nanoparticules ne se fera donc pas sans franchir au préalable certaines étapes. Ceci exigera des efforts aussi bien des autorités publiques que des acteurs économiques, en particulier pour assurer l'existence et le maintien de ressources suffisantes en experts toxicologues et écotoxicologues dans leurs sphères respectives. Les questions éthiques associées à certains développements potentiels issus de nanotechnologies sont similaires à celles que posent des technologies existantes - en termes de protection de données privées notamment, mais aussi de brevetabilité du vivant, si l'on considère que les nanotechnologies recouvrent une partie des biotechnologies. Certes, les risques pourront être amplifiés par l'augmentation des capacités de stockage et de traitement de l'information qu'apporte la miniaturisation de la microélectronique, qui est d'ailleurs loin d'approcher l'échelle nanométrique. Cependant, l'arbre cachant souvent la forêt, certains usages de dispositifs non nanométriques mais rebaptisés « nano », comme l'utilisation de puces ADN, pourraient fragiliser les systèmes de santé des pays industrialisés, et accentuer encore s'il en était besoin les inégalités avec les pays en développement. Ainsi, l'exploitation de tests génétiques à fins de thérapies préventives personnalisées pourrait provoquer, si elle s'avérait fondée scientifiquement, l'apparition de traitements extrêmement onéreux inaccessibles au Sud et conduisant au Nord, soit à une augmentation considérable des coûts de santé publique, soit à une médecine à deux vitesses. Les nanotechnologies exemplifient une difficulté majeure pour nos sociétés technologiques : celle des rythmes différents Le développement de technologies conduisant à la mise sur le marché de nouveaux produits et systèmes s'effectue à un rythme si rapide qu'il ne permet pas aux Etats d'encadrer à temps les risques associés, lorsque cela est possible. En outre, les autorités publiques ne peuvent assumer seules la charge de développer les moyens techniques à cet effet. Par ailleurs, le paysage des risques avérés et potentiels qui résultent des activités économiques devient inextricable à un tel point que le gestionnaire de risques, en situation d'arbitrage impossible, se trouve confronté à des dilemmes sans fin. Le niveau d'indécidabilité augmentant, les gouvernements ont de plus en plus recours à des consultations de citoyens, afin d'estimer l'appréhension par la société de risques liés à des technologies émergentes. Ces nouveaux instruments de nos démocraties techniques, aussi intéressants et séduisants soient-ils soulèvent toutefois des questions difficiles. Ils ne pourront en particulier être utiles pour la progression des débats sur les questions aussi larges que disparates regroupées aujourd'hui sous le vocable de nanotechnologies qu'en sériant les problèmes. D'un autre côté, les bénéfices de technologies émergentes conduisant à des innovations radicales ne seront perceptibles bien souvent qu'à moyen ou long terme. Pour ce qui concerne les nanotechnologies, des pistes très intéressantes se dessinent dans le domaine médical, celui des économies d'énergie (lampes basse consommation, piles à combustibles, matériaux plus légers et plus résistants), du traitement des eaux et de la remédiation des sols. Il importe toutefois de garder à l'esprit que leur exploitation ne pourra survenir que dans les prochaines décennies, durant lesquelles les contraintes qu'exerce l'homme sur la planète s'intensifieront. A cet égard, un des risques politiques majeurs associé à l'engouement pour les nanotechnologies serait d'entretenir l'illusion que des solutions purement technologiques pourraient permettre de diminuer ces contraintes de manière significative à un horizon temporel pertinent.

 

VIDEO                CANAL  U                 LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

I R M

 

L'IMAGERIE MÉDICALE PAR RÉSONANCE MAGNÉTIQUE


Le Phénomène de Résonance Magnétique Nucléaire (RMN) découvert en 1946 est relatif aux propriétés magnétiques des noyaux des atomes. En médecine, il a donné naissance à l'Imagerie par Résonance Magnétique (IRM) qui constitue une des avancées les plus importantes de l'histoire de la médecine. L'IRM permet d'obtenir des images anatomiques du corps humain avec une finesse inégalée, sans avoir recours à des radiations ionisantes ou à l'injection de traceurs radioactifs. L'examen par IRM est indolore et peut être répété sans danger. La Spectrométrie de Résonance Magnétique (SRM) est une autre application du phénomène de résonance magnétique dans l'exploration du corps humain. La SRM qui connaît à présent un développement très rapide, analyse et visualise les réactions chimiques qui se produisent dans les tissus et les organes sans avoir à faire de prélèvements (biopsies). On obtient par SRM des images métaboliques du cerveau et de certains autres organes dont les anomalies éventuelles permettent de diagnostiquer de façon très précoce de nombreuses maladies et de quantifier l'effet des médicaments. Une application en plein développement concerne l'angiographie par résonance magnétique (ARM) qui permet la visualisation des vaisseaux de façon non invasive. Enfin, le fonctionnement du cerveau lorsqu'il gère des tâches motrices ou sensorielles peut être suivi par les nouvelles techniques de l'IRM fonctionnelle qui sont basées sur les variations du débit et de l'oxygénation du sang dans le tissu cérébral. Ces différentes modalités de l'Imagerie Médicale par Résonance Magnétique seront illustrées dans leurs applications à l'exploration du cerveau de l'homme.

VIDEO           CANAL  U              LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

THERAPIES CELLULAIRES

 

 

 

 

 

 

 

Le fantastique espoir des thérapies cellulaires


Alzheimer, Parkinson, diabète, leucémie… toutes ces maladies pourraient être traitées par thérapie cellulaire. Ce formidable espoir repose sur les cellules souches, capables de se transformer en n'importe quel type de cellule ou de tissu. Mais où peut-on trouver ces cellules ?


Pendant longtemps les cellules souches ont gardé leurs mystères. Comment les distinguer des cellules différenciées qui ne possèdent pas la même faculté de "transformisme" ?
En effet, toutes les cellules du corps humain contiennent le même nombre de chromosomes et donc le même nombre de gènes. Au stade embryonnaire, les cellules ne sont pas différenciées. Elles sont dites totipotentes, car elles sont alors capables de se développer en n'importe quel type de cellule ou de tissu humain : os, nerfs, muscles, cellules d'îlots pancréatiques, etc.
La différenciation cellulaire
La distinction entre elles apparaît au cours de la division cellulaire. Les cellules de cheveux ne se reproduiront plus qu'en cellules de cheveux, celles de muscles uniquement en cellules musculaires… le reste de l'information génétique reste endormi.
Depuis plus d'une dizaine d'années, les cellules souches suscitent de très nombreux espoirs. Elles sont potentiellement capables de se différencier en plusieurs types de cellules matures. Elles suscitent de nombreux espoirs dans différents domaines thérapeutiques : la médecine régénérative et les greffes (capable de réparer, voire de remplacer, des cellules ou des organes défectueux) mais aussi la thérapie génique.
On distingue quatre grandes sources de cellules souches :
    ▪    Les cellules souches embryonnaires, qui sont prélevées sur un embryon surnuméraire de 5 à 6 jours ;
    ▪    Les cellules souches périnatales contenues dans le sang de cordon du nouveau-né et dans le placenta, peuvent se différencier en cellules sanguines utilisables pour des greffes, d'où la création depuis quelques années de banques de sang de cordon ;
    ▪    Les cellules souches adultes au niveau de ses tissus et organes, notamment au niveau de la moelle osseuse, du système nerveux ou encore de la pulpe dentaire, qui ont des capacités de différenciation limitées ;
    ▪    Les cellules souches IPS (cellules souches induites à la pluripotence), qui sont des cellules humaines adultes reprogrammées pour se transformer en n'importe quelle cellule et se renouveler à l'infini.
Ces cellules souches, appelées "IPS", sont dites "pluripotentes" : elles peuvent fournir des cellules spécialisées, sur commande, possédant le même patrimoine génétique que les cellules d'origine. Aujourd'hui, la reprogrammation des cellules IPS reste difficile à mettre en oeuvre et suscite des inquiétudes liées au risque de multiplication anarchique (évolution cancéreuse).

 

DOCUMENT             DOCTISSIMO                 LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon