ecole de musique piano
     
menu
 
 
 
 
 
 

LES ABEILLES

 

Paris, 12 mai 2011

Comment les abeilles adaptent-elles leur vitesse pour éviter les obstacles ?


A l'inverse des humains, les abeilles sont dotées d'une vision dorsale leur permettant d'esquiver les obstacles situés au-dessus de leur tête. Cette vision dorsale participe-t-elle au contrôle de leur vitesse ? Eh bien oui ! L'abeille se révèle capable d'ajuster sa vitesse en fonction des distances qui la séparent des obstacles, y compris dorsaux. Cela lui est possible grâce au défilement visuel perçu, notamment au-dessus de sa tête. C'est ce que viennent de démontrer expérimentalement des bioroboticiens de l'Institut des sciences du mouvement (CNRS / Université de la Méditerranée). Pour parvenir à ces résultats, les chercheurs ont, au préalable, modélisé la navigation en vol de cet insecte dans les trois dimensions. Leurs travaux sont publiés le 12 mai 2011 dans la revue PLoS One.
Comment une créature aussi minuscule que l'abeille, dont le cerveau est plus petit que celui d'un oiseau, parvient-elle à contrôler son vol et ainsi, à éviter les obstacles en vol ou au sol ? On sait aujourd'hui que les prouesses sensori-motrices de ces miniatures volantes reposent sur un système nerveux composé de cent mille à un million de neurones. Lorsque l'insecte vole au-dessus du sol, l'image de l'environnement défile d'avant en arrière dans son champ visuel, créant ainsi un flux optique défini comme la vitesse angulaire à laquelle défilent les contrastes présents dans l'environnement. Par définition, ces flux optiques sont fonction du rapport entre la vitesse et les distances aux surfaces.

Pour prédire le vol des abeilles, les chercheurs ont conçu, il y a un an, un modèle de simulation appelé ALIS. A partir de données essentiellement visuelles (objets présents, déplacement de ces objets…), ce dispositif permet après traitement informatique, de reproduire les trajectoires des insectes. Ces spécialistes en biorobotique ont ensuite construit une chambre de vol aux formes géométriques complexes que les abeilles butineuses ont appris, petit à petit, à traverser pour aller récolter une récompense d'eau sucrée. Cette chambre est dotée de plusieurs rétrécissements où le sol et le plafond, puis les parois latérales se rapprochent. Les chercheurs ont ainsi observé que l'abeille diminue sa vitesse proportionnellement à la section minimale de la chambre de vol, que la section minimale soit horizontale ou bien verticale. Autrement dit, l'animal ralentit sa vitesse de vol dès lors qu'un obstacle se rapproche. Sa vitesse dépend de l'encombrement de son champ visuel et donc de la distance aux obstacles. Ce comportement est parfaitement prédit en simulation par le modèle ALIS : les trajectoires d'abeille volant dans la chambre de vol correspondent parfaitement aux trajectoires d'insecte virtuel prédites par modélisation.

Les scientifiques proposent l'existence de régulateurs qui maintiennent les flux optiques, en d'autres termes les rapports vitesse/distances perçus visuellement, à des valeurs constantes. Ainsi, si l'insecte vole dans un environnement qui devient de plus en plus encombré, son « régulateur automatique » le contraindrait à diminuer sa vitesse de manière à maintenir constant le rapport vitesse/distances. Le modèle de « régulateur de flux optique » permet de comprendre comment une abeille parvient à voler sans jamais avoir besoin de mesurer ni sa vitesse, ni sa position par rapport aux parois. Elle s'affranchit ainsi des capteurs de l'aéronautique traditionnelle, comme les radars doppler qui délivrent la vitesse par rapport à sol. Ces capteurs ultra-précis présentent l'inconvénient d'être encombrants, onéreux et gourmands en énergie. Ces travaux illustrent le double enjeu, fondamental et appliqué, de la biorobotique et pourraient trouver des applications dans l'aérospatial, tant sont cruciales les phases où un avion vole en environnement confiné.

DOCUMENT          CNRS            LIEN

 
 
 
 

LES MOTEURS BIOLOGIQUES

 

Les moteurs biologiques - Jacques PROST


Moteurs moléculaires biologiques par Jacques prost La vie des êtres unicellulaires ou multicellulaires met en jeu un certain nombre de fonctions parmi lesquelles la synthèse chimique, le mouvement, le transport de matière, la morphogenèse, la duplication etc. Depuis environ une quinzaine d'année, il est apparu de plus en plus clairement que ces fonctions étaient assurées par des machineries d'une complexité redoutable. Le nom générique de moteur moléculaire est associé au plus simples de ces machineries. On distingue couramment les moteurs moléculaires rotatifs des moteurs moléculaires linéaires. Les premiers sont impliqués principalement dans la synthèse du carburant cellulaire essentiel l'ATP (adénosine triphosphate) et dans la propulsion de bactéries telles que E. coli, les seconds sont ubiquitaires dans les cellules eucaryotes. Ils participent au transport intra-cellulaire, à la motilité cellulaire, à la mitose, à l'organisation de la cellule, aux contractions musculaires, aux battements des cils et des flagelles, à la détection du son etc. S'il est aisé de comprendre l'importance biologique des moteurs moléculaires on peut se demander en quoi ils peuvent intéresser les physiciens et les physico-chimistes. La raison est double, bien que l'accent soit souvent mis seulement sur le premier aspect. Premièrement, la faible taille de ces moteurs en fait des objets soumis violemment aux fluctuations thermiques (" bombardement " incessant par les autres molécules), et malgré ces sollicitations stochastiques importantes, ils ont un fonctionnement comportant très peu de " fautes ", leur mouvement est presque déterministe, leur rendement est élevé ( presque un pour certains moteurs rotatifs).On a donc là un problème de physique statistique intriguant. Deuxièmement, et cet aspect est sous-estimé à l'heure actuelle, les moteurs moléculaires sont des acteurs essentiels des processus d'auto-organisation de la cellule. La description de ces processus fait appel à la physique des transitions de phase et des systèmes dynamiques. Ce champ d'activité commence tout juste à être exploré, et présence une très grande richesse.

CONFERENCE       CANAL  U           LIEN

 

 
 
 
 

PROTEINES

 

Protéines recombinantes et applications


La construction des protéines recombinantes (PR) se fait en intégrant des fragments d'ADN (ADNc) dans le génome d'organismes vivants. On obtient ainsi en quantité suffisante des protéines clefs autrement impossibles à purifier du fait de leur rareté. L'ADNc est choisi pour coder des molécules utiles à la compréhension, à la détection et au traitement des maladies. Les manipulations de l'ADNc, telle la mutagenèse dirigée, permettent d'établir les relations de leur fonction avec leur structure tridimensionnelle (3D). Les concepts et le savoir-faire nécessaires à la sélection et à leur construction du recombinant sont désormais incontournables pour les programmes de recherche de "l'après génome" comme pour les programmes de types industriels. Dans son émission 1, François Godeau nous explique le principe d'obtention des PR et nous donne des exemples de leur applications. Dans son émission 2, il nous expose comment on élabore un projet d'utilisation des protéines recombinantes pour la détection précoce des cancers.

CONFERENCE         CANAL  U          LIEN

 
 
 
 

SONDE

 

Paris, 25 septembre 2011

Une sonde moléculaire pour contrôler le métabolisme d'une plante


Des chercheurs du CEA(1), du CNRS, de l'Inra, et des Universités Joseph Fourier de Grenoble et Montpellier 2, ont mis au point une sonde moléculaire, la Galvestine-1, capable de contrôler de manière ultra-fine l'activité d'une enzyme chez la plante Arabidopsis thaliana. Cette enzyme, MGD1, est responsable de la synthèse des galactolipides, principaux constituants des membranes photosynthétiques. Grâce à cette méthode innovante de « génétique chimique », les scientifiques ont pu identifier le rôle des galactolipides dans le développement de la plante. Ce résultat vient de faire l'objet d'une publication en ligne dans la revue Nature Chemical Biology du 25 septembre 2011.
Comment contrôler l'activité d'une enzyme au sein d'un organisme vivant ? Une des méthodes couramment utilisées consiste à modifier le gène codant pour l'enzyme ciblée. Mais il existe d'autres méthodes, notamment celle mettant en jeu de petites molécules organiques. Celles-ci vont directement agir au niveau de l'enzyme et ainsi permettre un contrôle beaucoup plus fin de son activité et donc de l'organisme vivant. Des chercheurs du CEA, du CNRS, de l'Inra et des Universités Joseph Fourier de Grenoble et Montpellier 2, ont été parmi les premiers à utiliser cette dernière approche, dite de « génétique chimique », chez un organisme végétal, Arabidopsis thaliana. Il leur a fallu dix ans de recherches pour sélectionner le bon composé, parmi une collection de 24 000 molécules, synthétiser 250 analogues et caractériser son fonctionnement depuis l'enzyme isolée jusqu'à la plante entière. La petite molécule, ou sonde moléculaire, qui sera finalement utilisée pour agir sur l'enzyme MGD1, a été appelée « Galvestine-1 ».

L'enzyme MGD1 est responsable de la synthèse des galactolipides, principaux constituants des membranes photosynthétiques, au sein desquelles s'effectue la capture de l'énergie solaire, indispensable au développement des plantes. Pour seulement un mètre carré de feuilles, ces membranes déroulées représenteraient l'équivalent en surface de un à trois terrains de football ! Les galactolipides constituent ainsi les lipides les plus abondants et les plus importants de la biosphère. Ils sont si importants que la suppression du gène codant pour leur enzyme, la MGD1, entraîne la mort de la plante.

L'utilisation de la « Galvestine-1 » permet aux chercheurs d'étudier les réactions d'Arabidopsis thaliana à des quantités variables de galactolipides. En effet, en se fixant sur le site de liaison de l'enzyme MGD1, la molécule inhibe progressivement l'activité de celle-ci, diminuant, de ce fait, la quantité de galactolipides synthétisée. Ainsi, en plaçant cette sonde moléculaire à l'endroit et au stade de développement voulus, les chercheurs contrôlent le métabolisme des lipides de manière extrêmement fine. Ils ont notamment introduit la « Galvestine-1 » au niveau du tube pollinique, qui conduit le gamète mâle vers le gamète femelle au moment de la fécondation, ce qui leur a permis de montrer le rôle déterminant des galactolipides dans la germination du pollen.

Au-delà de son intérêt pour la compréhension des mécanismes fondamentaux de la physiologie des plantes, cette approche de « génétique chimique » ouvre la voie au développement de diverses molécules organiques. En particulier, les chercheurs s'intéressent à la production de lipides aux qualités optimisées pour de nombreuses applications biotechnologiques comme la mise au point d'herbicides.

DOCUMENT          CNRS          LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon