ecole de musique piano
     
menu
 
 
 
 
 
 

Une enzyme cruciale enfin démasquée

 

 

 

 

 

 

 

Une enzyme cruciale enfin démasquée
| 20 NOV. 2017 - 15H19 | PAR INSERM (SALLE DE PRESSE)

BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | CANCER | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE



Après 40 ans de recherche, des chercheurs du CEA, du CNRS, de l’Université Grenoble Alpes, de l’Université de Montpellier et de l’Inserm ont enfin démasqué l’enzyme responsable de la détyrosination de la tubuline. Surprise : ce n’est pas une enzyme mais deux qui ont été découvertes capables de modifier ce composant essentiel du squelette de la cellule. Ces travaux ouvrent de nouvelles pistes pour mieux comprendre le rôle de la tubuline dont les altérations accompagnent cancers, maladies cardiaques et défauts neuronaux. Ces résultats sont publiés le 16 novembre 2017 dans la revue Science.

Une collaboration internationale impliquant des chercheurs du CEA, du CNRS, de l’Inserm, de l’Université Grenoble Alpes, de l’Université de Montpellier et de l’Université de Stanford[1] a identifié une enzyme, la Tubuline CarboxyPeptidase (TCP), qui est responsable d’une transformation biochimique des microtubules cellulaires, la détyrosination. La détyrosination est une réaction biologique consistant à supprimer l’acide aminé terminal tyrosine[2], de la tubuline α, un composant des microtubules. Alors qu’elle était recherchée depuis quatre décennies, les biologistes ont réussi à isoler cette protéine par purification et ont ensuite apporté les preuves de son activité cellulaire.

Les microtubules contribuent à des fonctions cellulaires essentielles
Les microtubules sont des fibres dynamiques présentes dans toutes les cellules. Formés par l’assemblage de deux protéines (tubuline α et tubuline β), les microtubules assurent de  nombreuses fonctions. Ils séparent les chromosomes destinés aux deux cellules filles lors de la division cellulaire, ils contribuent à la polarité des cellules, à la morphologie et à la migration cellulaire. Ils forment des sortes de rails sur lesquels sont transportés des constituants cellulaires tels que des protéines ou des brins d’ARN.
Ces fonctions cellulaires sont régulées grâce à l’existence de « signaux » présents à la surface des microtubules. Ces signaux sont des modifications biochimiques des acides aminés (appelées modifications post-traductionnelles car elles ont lieu après la synthèse de la protéine) qui sont réalisées par plusieurs enzymes qui, ici, modifient les tubulines.

L’enzyme TCP, identifiée après 40 ans de mystère
L’activité de l’une de ces enzymes a été mise en évidence pour la première fois en 1977 par des chercheurs argentins qui lui donnent le nom de TCP (Tubuline CarboxyPeptidase). Cette enzyme, qui n’avait jusqu’à ce jour jamais été identifiée (sa taille et sa séquence restaient inconnues), a comme fonction de supprimer le dernier acide aminé, une tyrosine, de l’extrémité de la tubuline α. C’est la réaction de détyrosination. Une enzyme réverse, la ligase TTL, est chargée de repositionner cette tyrosine à sa place. C’est la tyrosination. Ce cycle de détyrosination/tyrosination est vital pour la cellule et l’organisme. Une détyrosination massive (anormale) est observée dans plusieurs cancers sévères et maladies cardiaques.

Identifier et caractériser la TCP constituait donc un objectif majeur pour comprendre la fonction physiologique de la détyrosination de la tubuline α et pour évaluer les conséquences de son inhibition.
Pour isoler la TCP, les chercheurs ont suivi son activité, utilisé des techniques classiques de biochimie et fait appel à des chimistes de l’Université de Stanford qui ont développé une petite molécule inhibitrice de son activité. Cette molécule a été utilisée comme hameçon pour « pêcher » l’enzyme convoitée.

Les microtubules sont des fibres présentes dans toutes les cellules composées d’un empilement de tubulines α/β. La tubuline α porte une tyrosine (Y) à son extrémité qui est alternativement enlevée et replacée par deux enzymes, modifiant ainsi la surface des microtubules. La TCP (représentée par une scie composée de deux éléments, VASH/SVBP) est responsable de la détyrosination. La TTL (représentée par un tube de colle) replace la tyrosine sur la tubuline. Ce cycle est essentiel aux diverses fonctions des microtubules dans les cellules (division, migration, …) et vital pour l’organisme. © C. Bosc, GIN

Au final, ce ne sont pas une, mais deux enzymes qui ont été découvertes ! Ces dernières, dénommées VASH1 et VASH2, étaient déjà connues des scientifiques mais sans savoir qu’il s’agissait d’enzymes en lien avec le cytosquelette. Les chercheurs ont montré qu’à la condition d’être associées à une protéine partenaire appelée SVBP, VASH1 et VASH2 sont capables de détyrosiner la tubuline α. Pour le démontrer, les chercheurs ont supprimé leur expression (ou celle de leur partenaire SVBP) dans les neurones. Ils ont alors observé une très forte diminution du taux de détyrosination de la tubuline α, ainsi que des anomalies dans la morphologie des neurones (v. Figure). Les chercheurs sont allés plus loin en montrant que ces enzymes sont également impliquées dans le développement du cortex cérébral.

Des perspectives pour la lutte contre le cancer
Ainsi, quarante ans après les premiers travaux sur la détyrosination de la tubuline α, les enzymes responsables ont été démasquées ! Dorénavant, les scientifiques espèrent qu’en modulant l’efficacité de la TCP et en améliorant les connaissances du cycle détyrosination/tyrosination, ils pourront mieux lutter contre certains cancers et progresseront dans la connaissance des fonctions cérébrales et cardiaques.


[1] Les instituts suivants sont impliqués : Grenoble Institut des neurosciences, GIN (Inserm/Univ. Grenoble Alpes); l’Institut de biosciences et biotechnologies de Grenoble, BIG (Inserm/CEA/Univ. Grenoble Alpes) ; l’Institut pour l’avancée des biosciences, IAB (Inserm/CNRS/Univ. Grenoble Alpes), le Department of Pathology, Stanford University School of Medicine (Stanford, USA), l’Institut de génétique humaine, IGH (CNRS/Univ. de Montpellier), le Centre de recherche en biologie cellulaire de Montpellier, CRBM (CNRS/Univ. de Montpellier).
[2] La tyrosine est l’un des 22 acides aminés qui constituent les protéines

 

 DOCUMENT      inserm     LIEN 

 
 
 
 

Un test sanguin développé pour détecter une maladie rare neurologique

 

 

 

 

 

 

 

Un test sanguin développé pour détecter une maladie rare neurologique


COMMUNIQUÉ | 12 JUIN 2017 - 14H07 | PAR INSERM (SALLE DE PRESSE)
NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE



Des équipes de l’AP-HP en collaboration avec des chercheurs de l’ICM (Inserm/CNRS/UPMC), et la start-up Metafora Biosystems, issue du CNRS, viennent de développer un test de diagnostic sanguin d’une maladie neurologique rare mais traitable, la maladie de De Vivo.
Il a été testé sur 30 patients atteints de cette maladie qui induit des déficits neurologiques tels qu’une épilepsie ou des troubles de la marche par exemple.
Le nouveau test[1], dont les résultats sont publiés dans la revue Annals of Neurology, permettra d’identifier rapidement (en moins de 48h) et facilement les enfants et les adultes touchés comparativement aux tests diagnostiques actuels qui reposent sur un geste invasif, la ponction lombaire ou des analyses ADN complexes.
La maladie de De Vivo ou syndrome du déficit en transporteur cérébral de glucose de type 1 (GLUT-1) se caractérise le plus souvent par un retard du développement, une épilepsie et/ou des troubles moteurs chez l’enfant. Des formes frustres[2] ont été décrites chez les enfants (accès de mouvements anormaux) mais aussi les adultes. On estime, sur la base d’une prévalence estimée à 1/83 000 dans la population danoise, à 800 le nombre de patients en France[3], dont un peu plus d’une centaine serait diagnostiquée. Dès lors qu’ils sont diagnostiqués, les patients peuvent bénéficier de traitements métaboliques qui diminuent les symptômes.
Le Dr Fanny Mochel à l’hôpital Pitié-Salpêtrière AP-HP, en lien avec les équipes de plusieurs hôpitaux de l’AP-HP (Bichat, Raymond-Poincaré et Robert-Debré) et de l’Institut du cerveau et de la moelle épinière (Inserm/CNRS/UPMC), ont développé avec la start-up Metafora Biosystems, un test de diagnostic sanguin simple et rapide (moins de 48h) de la maladie de De Vivo. Le diagnostic actuel est contraignant puisqu’il repose sur un geste invasif, la ponction lombaire, et des analyses génétiques complexes.

Dans cette étude, les prélèvements sanguins de 30 patients atteints de la maladie avec des profils différents, en fonction de l’âge et des symptômes, ont été analysés. Comparés à 346 prélèvements d’individus témoins, les résultats montrent que le test est significativement concluant avec 78% de diagnostic, incluant des patients pour lesquels les analyses génétiques n’avaient pas permis d’établir le diagnostic.

Forts de ces résultats, les chercheurs recommandent l’utilisation de ce test en routine clinique dans tous les services de neuropédiatrie et de neurologie. Ils suggèrent que la simplicité de ce nouveau test devrait augmenter le nombre de patients identifiés en France.
Grâce à ce nouveau test sanguin innovant, la maladie va pouvoir être recherchée chez tout patient présentant une déficience intellectuelle et/ou une épilepsie et/ou un trouble de la marche. Les traitements que l’on peut mettre en œuvre améliorent considérablement les symptômes, avec par exemple la disparition des crises d’épilepsie, et sont d’autant efficaces qu’ils sont débutés tôt, d’où l’importance d’un diagnostic précoce.
[1]  Protégé par le brevet CNRS WO2004/096841.
[2] Quand les patients ne présentent pas tous les symptômes caractéristiques d’une maladie ou que ces symptômes sont légers.
[3] [1] Larsen J, et al. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia. 2015 Dec;56(12):e203-8.

 

DOCUMENT      inserm     LIEN 

 
 
 
 

LES ABEILLES

 

 

 

 

 

 

 

abeille


Longtemps appelée « mouche à miel », l'abeille mellifique, originaire d'Eurasie, fascine surtout par ses activités de butineuse et par son aptitude singulière à vivre et à s'organiser en colonie. Une organisation qui n'existait peut-être pas chez ses lointains ancêtres...
1. La vie des abeilles
1.1. Une société très organisée où chacune a sa place
Tous les naturalistes l'ont remarqué, les abeilles mellifiques sont extraordinairement solidaires et vivent en colonie. Celle-ci possède son identité propre, puisqu'elle se défend contre tout élément étranger, insectes ou autres abeilles.

Une colonie comprend trois sortes d'abeilles adultes : une reine unique, avec sa double fonction de reproductrice et de régulatrice ; quelque 2 500 mâles – appelés aussi faux-bourdons –, qui ont pour seule fonction de féconder la nouvelle reine d'un nid, lors du vol nuptial ; et, enfin, les ouvrières – 50 000 environ –, qui vivent 38 jours en été et 6 mois en hiver et qui, au cours de leur vie, sont tour à tour nourrices, ménagères, bâtisseuses, magasinières, gardiennes et butineuses... Elles sont dirigées par la reine qui, par des sécrétions, les phéromones, leur transmet des ordres chimiques et peut, par exemple, appeler ainsi tout son monde autour d'elle. Quant aux larves, elles occupent le couvain, qu'on peut comparer à une nursery : il est composé de 6 000 œufs, 9 000 larves, 20 000 nymphes. Mais tous ces chiffres ne représentent qu'une moyenne, la population d'un nid dépendant de divers facteurs : capacités de la reine, conditions climatiques, accès à la nourriture, maladies...
Cette colonie vit dans un nid constitué de rayons de cire que les ouvrières entretiennent en permanence. Celui-ci comporte deux parties : la réserve de nourriture, où se fait le miel, et la nursery, où est élevé le couvain. Quand il y a surpopulation, la reine émigre avec une partie des ouvrières pour créer une nouvelle colonie, c'est l'essaimage.
La reine, le faux-bourdon et l'ouvrière n'ont pas la même taille. La reine, plus grande que l'ouvrière, a un abdomen plus effilé ; la cellule où elle grandit, en forme de dé à coudre, est la plus haute. Le mâle se caractérise par deux très gros yeux et un abdomen carré. Sa cellule est hexagonale, comme celle des ouvrières, mais plus importante, avec un opercule plus bombé. La reine se nourrit de gelée royale, les mâles et les ouvrières n'en consommant que pendant 3 jours, pour passer ensuite au pollen, puis au miel.

La chaîne cirière
La construction du nid exige une organisation très élaborée. Les ouvrières bâtisseuses, ou cirières, sont âgées de 12 à 19 jours quand leurs glandes cirières sécrètent la cire à partir du miel qu'elles absorbent. Elles constituent ce que l'on appelle la « chaîne cirière ». Elles se suspendent en plusieurs grappes dont chacune ressemble à une pyramide inversée. Chaque abeille s'accroche aux autres par les pattes, plusieurs chaînes pouvant être reliées entre elles par des insectes qui sont alors complètement écartelés. Grâce aux brosses de ses pattes postérieures, une ouvrière bâtisseuse commence par récupérer ses lamelles de cire, elle les porte ensuite à sa bouche pour les malaxer et les humecter de salive. La boulette qui résulte de cette opération passe ensuite de cirière en cirière avant de parvenir aux abeilles chargées de la construction des alvéoles. Celles-ci utilisent leurs mandibules pour aplatir la cire et façonnent alors des parois d'une incroyable minceur : 0,073 mm. Au cours de toutes ces opérations, les antennes jouent le rôle d'instruments de mesure de haute précision.
Une fois achevées, les cellules ont une forme hexagonale. Leur hauteur varie selon leur destination (réserve de nourriture ou couvain). Elles sont légèrement inclinées vers l'intérieur et s'emboîtent parfaitement les unes dans les autres sur un rayon, formant ainsi un ensemble remarquable par sa solidité : un rayon composé d'environ 40 g de cire peut supporter près de 2 kg de miel ! Blanche au début, la cire des parois devient brune et noirâtre en vieillissant.
La régulation thermique du nid est assurée, au degré près, par toute la colonie. En été, l'ouvrière agite les ailes pour ventiler l'atmosphère, expulser l'air chargé d'humidité ; en hiver, elle les fait vibrer doucement pour réchauffer l'atmosphère.

L'essaimage

Il a lieu généralement au printemps. Laissant la place à une autre abeille qui prendra sa succession, la reine entraîne environ les deux tiers de la colonie. Pendant que des éclaireuses partent à la recherche d'un endroit pour construire un nouveau nid, l'essaim se pose près de l'ancien. Gorgées de miel, dont elles ont fait provision avant le départ, les abeilles sont alors inoffensives.

Les experts proposent deux explications à l'essaimage : quand la miellée (quantité de miel produite) n'est pas importante, il y a plus de place dans la ruche pour le couvain, ce qui augmenterait la ponte, d'où le recours à l'essaimage ; ou bien ce serait un facteur hormonal qui favoriserait la naissance de nouvelles reines, provoquant le départ de l'ancienne.

1.2. Des abeilles chevronnées pour butiner et récolter
L'abeille ouvrière se met à butiner à partir du 21e jour environ après sa naissance. C'est le dernier métier qu'elle exerce. C'est elle que l'on peut voir, du printemps à l'automne, voleter de fleur en fleur, avant de trouver la mort, le plus souvent dans quelque toile d'araignée ou dans le bec d'un oiseau. En attendant, elle se nourrit, à raison de 0,5 mg par kilomètre, du miel dont elle a fait provision avant de quitter la ruche. Dans sa vie, chaque abeille ne visite qu'une seule espèce de fleur et ne rapporte au nid qu'un seul type de butin : le nectar, le pollen, la propolis ou l'eau dont la colonie a besoin. L'eau sert à diluer le miel et à refroidir le nid par évaporation. Les larves en absorbent aussi une grande quantité.

Le nectar est aspiré

Sécrété par les fleurs au moyen de petites glandes appelées nectaires, le nectar est une solution sucrée qui contient des minéraux et des substances odorantes. L'abeille le prélève en s'introduisant dans la fleur et en l'aspirant au moyen de sa trompe, un organe de 6,5 mm, que prolonge une langue minuscule (2 mm). Elle le met ensuite dans son jabot, sorte de poche pouvant contenir jusqu'à 75 mg de la précieuse substance. Pour remplir ce sac, une abeille qui récolte, par exemple, le nectar du trèfle doit visiter entre 1 000 et 1 500 fleurs. Elle y ajoute des produits qui hydrolysent les sucres pendant le vol de retour : c'est le début de la fabrication du miel. Une fois au nid, la butineuse transmet son butin à une ouvrière magasinière. Un litre de nectar représente un nombre de voyages qui peut varier de 20 000 à 100 000.

Le pollen est amassé

D'autres butineuses sont spécialisées dans la récolte du pollen. Il se compose de milliers de grains microscopiques que produisent les étamines. Sorte de spermatozoïdes de la fleur, ces grains sont prêts à être déposés sur le pistil – ou élément femelle – d'une autre fleur, afin d'assurer la reproduction de l'espèce. Les grains de pollen constituent un aliment indispensable pour les jeunes abeilles. Pour récolter cette poudre, l'abeille butineuse déchire les étamines à l'aide de ses mandibules et forme une boulette en humectant les grains avec le miel dont elle a fait provision dans son jabot avant de sortir du nid. Pendant le vol, elle s'aide du peigne de ses pattes postérieures pour faire passer la boulette de pollen dans les corbeilles situées dans la partie supérieure de celles-ci. Elle récupère également le pollen sur son corps à l'aide de ses 6 pattes. Tout cela se fait à une vitesse telle que l'opération n'est pas visible à l'œil nu. Lorsque les corbeilles sont très pleines, elles ressemblent à de petits sacs accrochés aux pattes de la butineuse, qui transporte ainsi jusqu'à 50 mg de pollen, un poids énorme comparé au sien – environ 82 mg...
D'autres abeilles butineuses récoltent la propolis. Cette substance qui recouvre les bourgeons de certains arbres – peupliers, saules, marronniers... –, mêlée à des sécrétions salivaires et à du pollen, sert d'enduit pour boucher les fissures, réparer les rayons, et embaumer les ennemis tués.

Danse des abeilles

Lorsqu'elle découvre une nouvelle source de récolte, la butineuse rentre au nid et exécute, sur les rayons, une danse, à l'attention des autres butineuses. Quand la source est à moins de 10 m, l'abeille exécute un cercle. Si elle est entre 10 et 40 m, la danse est en forme de faucille ; si elle est plus éloignée, elle est en forme de huit aplati, avec des demi-cercles tantôt à droite, tantôt à gauche. La danse reproduit l'angle formé par la ligne du soleil et celle de la source de nourriture découverte. Cet angle donne la direction. La fréquence des tours et le rythme du frétillement de l'abdomen de l'abeille indiquent aussi le degré de difficulté pour y accéder.

1.3. Plusieurs métiers dans une même vie
Si l'on met à part quelques vols d'essai, le plus souvent en groupe, pour apprendre à situer le nid et à en reconnaître les environs, l'abeille ouvrière passe pratiquement les trois premières semaines de sa vie à l'intérieur. Du 1er au 3e jour après sa naissance, elle nettoie les cellules vides du couvain, afin que la reine puisse pondre à nouveau. À partir du 3e jour, ses glandes mammaires, situées dans la tête, se développent et elle devient nourrice, s'occupant en un premier temps des larves plus âgées, puis des plus jeunes, lorsqu'elle est capable de produire la gelée royale, une matière très nutritive sécrétée par ses glandes hypopharyngiennes et mandibulaires. Par la suite, ces glandes s'atrophient de sorte que l'ouvrière passe à d'autres travaux – enlèvement des gros déchets et des cadavres d'abeilles et surtout stockage du pollen et du nectar dans différentes cellules. Du 12e au 19e jour, c'est la production de la cire et la construction des alvéoles. Enfin, avant de partir pour butiner, la dernière activité de l'abeille est celle de sentinelle. Postée à l'entrée du nid, elle contrôle les animaux qui y pénètrent, et donne l'alerte s'il s'agit d'un étranger.
En cas de perturbations graves au sein de la colonie, l'organisme des ouvrières s'adapte, et celles-ci se remplacent mutuellement. Pendant ses longs moments d'oisiveté, l'abeille reste immobile ou se promène.

La vie en hiver
Contrairement à l'ouvrière née au printemps qui ne vit que 38 jours, celle née entre août et novembre vit tout l'hiver, soit environ 6 mois, dans le nid. La colonie ne comprend alors que 40 000 abeilles, puisqu'il n'y a plus ni couvain ni mâles. L'abeille a constitué dans son corps gras des réserves pour la mauvaise saison. Animal à sang froid, elle meurt sous une température inférieure à 8 °C. Au-dessous de 18 °C, les ouvrières se regroupent en grappe autour de la reine pour se réchauffer. Au centre de ce groupe, la température est maintenue à 35 °C. Les abeilles puisent dans leur réserve de miel pour se nourrir, mais, dans un souci de propreté, elles s'interdisent toute déjection. Dès le 15 janvier, la reine peut se remettre à pondre.
La fabrication du miel



Rentrée au nid le jabot plein de nectar, la butineuse le remet aux magasinières, qui vont alors s'employer à le transformer. Le nectar est d'abord ingéré et, pendant 20 minutes, passe du jabot à la bouche et de la bouche au jabot. Sous l'influence d'une sécrétion, l'invertine, le saccharose du nectar se transforme en glucose et en lévulose. Le nectar est ensuite placé dans une cellule que les ouvrières recouvrent d'un bouchon de cire, l'opercule. Là, il finit de se transformer en miel. Celui-ci contient 85 % de sucres, ainsi que des sels minéraux et des vitamines.

1.4. Le vol nuptial conduit le mâle à la mort
Lorsqu'une colonie se retrouve orpheline soit après la mort de la reine, soit après l'essaimage, les ouvrières élèvent de nouvelles reines. Ces jeunes larves femelles, semblables aux ouvrières, ont été pondues dans de plus grandes alvéoles. Les candidates à la succession sont nourries exclusivement de gelée royale.

Une compétition mortelle
Aussitôt née, la première reine se précipite sur ses rivales pour les piquer à mort. Si plusieurs reines naissent en même temps, un combat s'engage jusqu'à ce que la meilleure l'emporte, les vaincues étant vouées à la mort. La maturation sexuelle de l'abeille victorieuse s'achève au 6e jour. Les ouvrières la nourrissent, mais sont agressives envers elle pour la pousser à prendre son vol nuptial. Celui-ci a lieu le plus souvent par un bel après-midi sans vent. La température doit être au minimum de 20 °C. Les mâles de plusieurs colonies, rassemblés dans des lieux déterminés, fixes d'année en année, se dirigent vers tout ce qui ressemble à une jeune reine. Dès que l'une d'elles est repérée, elle est aussitôt prise en chasse par tous les faux-bourdons.
La copulation se déroule en vol, entre 6 et 20 m au-dessus du sol, parfois à plusieurs kilomètres du nid. Et, à chaque vol, la reine s'accouple avec plusieurs partenaires, 5 ou 6. Le mâle saisit la reine, la chevauche, ce qui provoque l'éversion de tout son appareil génital (l'endophallus). Pendant l'étreinte, une partie de son organe génital pénètre dans le sexe de la reine et y reste accroché jusqu'à l'accouplement suivant, à moins qu'à son retour au nid les ouvrières n'en débarrassent leur reine. L'accouplement déchire l'abdomen du mâle, qui meurt. Le sperme reçu par la reine au cours de son vol est, en principe, suffisant pour la vie, mais, en raison de pertes successives, plusieurs vols et accouplements sont nécessaires pour que la spermathèque (réservoir organique situé à l'extrémité de l'abdomen) soit remplie.
La reine se met alors à pondre et dépose un œuf par cellule. Elle choisit le sexe de l'œuf en fonction de la taille des cellules, qu'elle mesure avec ses pattes antérieures, l'alvéole destinée au mâle étant plus grande que celle de la femelle. Elle pond toutes les 40 secondes environ un œuf de 1,5 mm de long et 0,5 mm de diamètre, qui est fécondé – ou non –, lors de son passage par le canal ovarien, par les spermatozoïdes de la spermathèque. Pour avoir une ouvrière, la reine dépose un ovule fécondé. Pour avoir un mâle, elle ne met pas l'ovule en contact avec les spermatozoïdes. La reine est toujours très entourée.
Au 3e jour, l'œuf éclos donne naissance à une larve goulue, à laquelle les ouvrières apportent continuellement de la nourriture, mais qui cesse de s'alimenter pendant ses mues (4 en 6 jours).

Les faux-bourdons en sursis
Les faux-bourdons sont présents dans le nid d'avril à septembre, condamnés à rester inactifs. En effet, ils ne possèdent morphologiquement aucun « instrument » leur permettant d'exercer une fonction au sein de la colonie : ni glande cirière, ni corbeilles, ni peigne à pollen... Nourris par les ouvrières, leur unique fonction semble être de féconder la reine. Le vol nuptial achevé, tous les faux-bourdons qui n'ont pu s'accoupler sont expulsés du nid et meurent de faim ou de froid.

1.5. Milieu naturel et écologie
Réparties sur toute la terre, les quatre espèces du genre Apis ont chacune des habitats différents. Trois d'entre elles nichent en l'air et se trouvent en Asie. Apis dorsata, l'abeille géante de l'Inde, est une habituée des sommets, elle peut vivre jusqu'à 2 000 m d'altitude. On la trouve de l'Asie du Sud-Est jusqu'aux Philippines. Apis florea ne dépasse pas, elle, les 500 m d'altitude, mais elle se répartit de la même façon sur le continent asiatique. Quant à Apis cerana, qu'on appelait autrefois Apis indica, elle peuple une grande partie de l'Asie, et on la trouve aussi en Chine et dans une partie de la Sibérie.
La quatrième espèce, Apis mellifica, l'abeille occidentale, est la plus répandue. Elle vit dans plusieurs pays européens (Espagne, Angleterre, Allemagne, France) où elle est aussi domestiquée, ainsi qu'en Afrique, et, depuis la colonisation, en Amérique, en Australie et en Nouvelle-Zélande. Elle niche dans des cavités naturelles ou artificielles. Elle s'adapte très bien aussi en montagne.

La pollinisation
Chez les phanérogames (ou plantes supérieures), la fécondation ne peut se produire que si le pollen est transporté par des étamines jusqu'au pistil : c'est la pollinisation. Le transport peut être assuré par le vent pour les plantes anémogames, mais 80 % des végétaux supérieurs sont entomogames, c'est-à-dire qu'ils dépendent des insectes pour la pollinisation. Or, les abeilles domestiques constituent de 65 à 95 % des insectes pollinisateurs. Mais les abeilles solitaires (mégachiles, osmies) sont les plus actives pour la pollinisation. On estime en tout cas que les avantages économiques de la pollinisation par les abeilles sont plus importants que ceux de la seule production de miel.

Prédateurs et profiteurs
Les abeilles sont la proie de nombreux prédateurs, mais aucun d'entre eux n'en consomme assez pour mettre en péril une colonie. Elles sont dévorées par des oiseaux insectivores tels que les hirondelles, les guêpiers et les mésanges. Lorsque l'hiver est rude, le pic-vert troue la ruche ou le nid de son bec puissant et attaque les abeilles qui y restent calfeutrées à l'abri du froid. Parmi les rapaces, la bondrée apivore, qui est protégée par son plumage, ne redoute pas la piqûre des abeilles et détruit les nids pour se nourrir du couvain. Les abeilles sont également piquées et tuées par d'autres insectes, comme le philanthe apivore qui ressemble à une grosse guêpe et presse d'abord l'abdomen de sa victime pour en faire couler le nectar jusqu'à la dernière goutte, avant de donner ensuite la carcasse à sa future larve. Les libellules, qui sont de redoutables carnivores, apprécient aussi les abeilles. Quant aux araignées, elles guettent leur proie avant de s'en nourrir. Le thomise piège les abeilles butineuses dans la corolle des fleurs et l'épeire diamède les saisit dans sa toile.
Certains animaux ne font qu'exploiter le travail de l'abeille en utilisant soit son nid, soit ses produits. Les réserves de miel attirent les guêpes. Un papillon qu'on appelle « teigne des ruches », Galleria mellonella, pond ses œufs sur les rayons. Les chenilles profitent de ce qu'une colonie est faible pour tisser leur toile à partir des rayons de cire. Un petit diptère, appelé « pou des abeilles » (Braula caeca), vit en parasite sur le corps de ses victimes, surtout celui de la reine, et leur fait dégorger de la nourriture. Il est d'autant plus redoutable qu'il propage la nosémose, maladie provoquée par un petit animal unicellulaire, ou l'aspergillose, causée par des champignons qui parasitent l'appareil respiratoire ou l'œil de l'abeille. Chez les mammifères, l'ours est un grand amateur de miel.

2. Zoom sur... l'abeille mellifique
2.1. Abeille mellifique (Apis mellifica)
Insecte invertébré, Apis mellifica possède un squelette externe rigide, mais articulé. Les organes internes baignent dans un liquide qui fait office de sang, l'hémolymphe. Incolore, ce liquide se déplace à l'intérieur du corps, grâce à un appareil dont l'action est comparable à celle d'un cœur, le vaisseau dorsal. Ce vaisseau donne une certaine impulsion à l'hémolymphe qui circule librement (il n'y a pas de vaisseaux pour la véhiculer).
Le corps de l'abeille est une sorte d'atelier en miniature, très perfectionné. Son appareil respiratoire est analogue à celui de tous les insectes. Un système de trachées très ramifiées amène l'air jusqu'à toutes les cellules. Les trachées communiquent avec l'extérieur par 20 stigmates (3 paires sur le thorax et 7 paires sur l'abdomen).
L'appareil digestif est un long tube allant de la bouche à l'anus. Au niveau de la tête se trouve le pharynx, au niveau du thorax l'œsophage, au niveau de l'abdomen le jabot, qui sert de réservoir pour le transport des aliments, puis vient le proventricule. C'est une sorte de valvule qui permet à l'abeille de se nourrir en faisant passer les aliments du jabot dans le ventricule, sans que le contraire soit possible. Enfin, le ventricule, puis l'intestin et la poche rectale terminent l'appareil digestif. Tout au long de cet appareil, les aliments sont digérés sous l'action des sucs. La poche rectale, située au bout de l'abdomen, est d'une capacité telle qu'elle permet à l'abeille de garder ses excréments pendant tout l'hiver.
Les sens de l'abeille sont très développés, en particulier celui de la vision. Grâce à ses cinq yeux et à ses trois ocelles, le champ visuel de l'insecte avoisine 360°, mais son acuité visuelle ne représente que le 80e de celle de l'homme, bien qu'elle soit supérieure à celle de beaucoup d'autres insectes. Fortement astigmate, l'abeille perçoit mieux les objets verticalement qu'horizontalement. Chez l'abeille, l'enchaînement des images se fait à 300 images par seconde, (alors qu'il est de 24 images chez l'homme), de sorte que, pour cet insecte, un film ne serait qu'une suite d'images fixes. En revanche, l'homme ne peut voir les mouvements des abeilles qu'en passant un film au ralenti.
Par ailleurs, les abeilles ne sont pas sensibles aux mêmes teintes que l'homme. Leurs couleurs sont le jaune-orangé (jaune-vert pour l'homme), le bleu-vert (pas de correspondance pour l'homme), le bleu (bleu et violet pour l'homme) et l'ultraviolet, invisible pour l'homme. Si le coquelicot attire les abeilles, ce n'est pas parce qu'il est rouge, mais parce qu'il réfléchit les rayons ultraviolets.
Le goût est très aiguisé chez l'abeille qui distingue le sucré, l'acide, l'amer et le salé. Il est lié à différents endroits du corps. On distingue le goût oral, localisé dans la cavité buccale, le goût tarsal dans les tarses, à l'extrémité des pattes, et le goût antennaire dans les huit dernières articulations de l'antenne. Mais les sensibilités de l'abeille sont différentes : ainsi, le lactose, qui a un goût sucré pour l'homme, ne l'a pas pour elle. En outre, ses capacités gustatives dépendent de son âge et de son état physiologique, de sa nutrition en particulier. Ainsi, lorsqu'elle est affamée, elle est plus sensible à de faibles concentrations sucrées qu'elle ne l'est dans des conditions normales.
Les antennes servent à la fois d'oreilles et de nez à l'abeille. Elles sont divisées en trois parties. La dernière, ou flagelle, est la plus longue et comporte 11 articulations porteuses de plaques qu'on appelle sensilles. Certaines d'entre elles servent à la perception des odeurs, d'autres à celle des sons, ou plutôt des vibrations (car on considère que l'abeille est sourde, mais très sensible aux vibrations).
Celles-ci sont perçues par les sensilles dites « trichoïdes » – une seule antenne peut en porter 8 500. Quant aux odeurs, elles sont captées par les plaques poreuses (chez l'ouvrière, leur nombre varie de 3 000 à 6 000, la reine en a 3 000 et les mâles 30 000), ainsi que par les sensilles dites « basiconiques », situées sur les troisième et dixième segments de l'antenne. L'abeille semble capable de discerner une odeur déterminée, même lorsque celle-ci est associée à plusieurs autres, mais elle ne sent le parfum des fleurs que si elle en est relativement proche. En revanche, c'est grâce à son odorat que la sentinelle placée à la porte du nid distingue les membres de sa colonie des intruses appartenant à d'autres communautés, et peut ainsi les chasser. De même, lors de la danse destinée à communiquer aux autres ouvrières des messages sur les sources de nourriture, la danseuse ne peut être vue par ses camarades, puisque la danse a lieu le plus souvent dans l'obscurité du nid. Si le message passe, c'est donc uniquement grâce aux perceptions tactiles, auditives et olfactives des ouvrières.

ABEILLE MELLIFIQUE OU MELLIFÈRE
Nom
(genre, espèce)
:    Apis mellifica
Famille :    Apidés
Ordre :    Hyménoptères
Classe :    Insectes
Identification :    Tête triangulaire faisant partie du corps ; gros yeux latéraux ; thorax d'où partent 3 paires de pattes et 2 paires d'ailes, abdomen rayé circulairement de noir et de jaune. Aussi appelée abeille domestique
Taille :    Ouvrière : de 14 à 15 mm ; reine : de 18 à 20 mm ; faux-bourdon : 15 mm
Poids :    Ouvrière : 82 mg ; reine : de 250 à 300 mg
Répartition :    Europe, Afrique, Australie
Habitat :    Partout où il y a des plantes mellifères
Régime alimentaire :    Pollen et nectar
Structure sociale :    Vit en colonie de plusieurs milliers d'individus
Maturité sexuelle :    Reine : 6 jours après la naissance ; faux-bourdon : de 5 à 15 jours après la naissance
Longévité :    En moyenne, ouvrière d'été : 38 jours ; ouvrière d'hiver : 6 mois ; reine : de 4 à 5 ans ; faux-bourdon : 22 jours
 
2.2. Signes particuliers
Ommatidies et ocelles
L'abeille est dotée d'une part de 2 yeux composés de milliers d'yeux simples, les ommatidies, d'autre part de 3 ocelles, yeux simples disposés en triangle au-dessus de la tête. Chaque ommatidie constitue un système optique complet, comportant une cornée transparente qui forme lentille convergente, un cristallin conique et une rétinule composée de 8 cellules sensibles à la lumière. Les ocelles n'ont eux, qu'une lentille biconvexe, un corps vitré et une rétine. Ils mesurent l'intensité lumineuse et fonctionnent surtout comme des cellules photoélectriques. L'abeille s'en sert aussi pour voir de très près. Grâce aux ocelles, elle perçoit le jour et la nuit, les passages nuageux et les éclaircies.
Peigne et brosse à pollen
Les pattes arrière de l'abeille présentent, au niveau de la 3e articulation, de minuscules outils, chefs-d'œuvre d'ingéniosité, qui servent à la récolte de la précieuse poudre. Tandis que le pollen a été entassé sur un petit axe situé au fond de la corbeille, le peigne aux poils rigides, au niveau de l'articulation, et la brosse aux poils plus souples, sur la face interne, retiennent et ratissent le pollen, pour le tasser en pelote.
Trompe
Dans cet organe de 6,5 mm coulisse une langue de 2 mm, sorte de cuillère effilée que l'abeille fait pénétrer jusqu'au fond de la fleur pour y aspirer à petites lampées le nectar.

3. Les autres espèces d'abeilles
La famille des apoïdés regroupe ce que l'on appelle les abeilles des zoologistes. Elle représente 20 % des insectes hyménoptères, c'est-à-dire des insectes qui subissent des métamorphoses fréquentes, ont des ailes membraneuses et un appareil buccal capable de broyer et de lécher. Les apoïdés comptent environ 20 000 espèces et se nourrissent de nectar et de pollen. La plupart sont des abeilles solitaires, et certaines entretiennent un début de vie communautaire. Mais aucune ne constitue de colonie aussi organisée que les abeilles de la famille des apidés supérieurs qui sont les seules abeilles dites « sociales ». Il s'agit des genres Apis, Bombus, ou bourdons, Melipona et Trigona.

3.1. Les abeilles sociales
Les apis (Apis)
Les 4 espèces qui composent le genre Apis et dont fait partie Apis mellifica sont des insectes sociaux, qui vivent toujours en colonie. Elles se multiplient par essaimage et sont réparties sur toute la surface du globe. Toutes ces abeilles dansent pour expliquer à leurs congénères les lieux de récolte.
Apis dorsata, Apis florea et Apis cerana ont toutes trois tendance à nicher en plein air et peuplent le continent asiatique. Apis dorsata est l'abeille géante de l'Inde. Cette espèce est très agressive, et la piqûre de son aiguillon très redoutée. Elle accroche son nid sur de grosses branches. Ce nid est, en fait, un seul et même rayon de 0,75 à 1 m environ.
Apis florea, ou abeille « naine », est moitié moins grande qu'Apis mellifica. Sa robe est multicolore. Son nid est, lui aussi, constitué d'un seul rayon, mais plus petit : 8 cm sur 12 cm.
Apis cerana, ou abeille des Indes, est la plus proche d'Apis mellifica.

Les bourdons (Bombus)
Insectes velus et noirs à bandes jaunes ou rouges, ils vivent pour la plupart en Europe et en Amérique du Nord. Ils se nourrissent de nectar et de pollen. À l'automne, la colonie disparaît et les femelles fécondées passent l'hiver dans une cache naturelle pendant une période qui peut durer de 6 à 8 mois. Au printemps, les « fondatrices » (c'est le nom qu'on donne aux femelles, dont le nid est construit dans le sol) se mettent à pondre pour créer une nouvelle colonie. Plus l'été est court, et plus la vie de la colonie est brève. Inversement, dans les régions chaudes, les colonies sont quasiment permanentes et ne cessent de pondre que pendant la saison sèche. En France, on compte 25 espèces de Bombus, les plus communes étant le bourdon des prés (Bombus pratorum), le bourdon des jardins (Bombus hortorum), le bourdon des champs (Bombus agrorum), le bourdon des pierres (Bombus lapidarius) et le bourdon terrestre (Bombus terrestris). Tous ces insectes jouent un rôle important pour la pollinisation. Ils sont en outre dotés d'un dard, dont ils ne se servent qu'assez rarement.

Les mélipones et les trigones (Melipona et Trigona)
Ces deux derniers genres, de la famille des apidés supérieurs, sont proches parents. Mélipones et trigones vivent dans les régions tropicales, en particulier au Mexique, aux Antilles et surtout au Brésil. La plupart de ces abeilles sont plus petites qu'Apis mellifica. Plutôt grêle, leur abdomen est plus court chez certaines espèces. Quelques trigones ne dépassent pas les 4 ou 5 mm. L'une des mélipones, Melipona scutellaris, qui atteint presque la taille de l'abeille mellifique, est particulièrement jolie.
L'organisation des mélipones est plus proche de celle des abeilles domestiques que de celle des bourdons. Ces insectes font leur nid dans le creux des arbres et des rochers. Ils en surveillent d'autant mieux l'entrée que celle-ci est précédée d'un long couloir. Quelques individus nichent dans le sol, comme les bourdons, et y cohabitent parfois avec les termites. Chez ces espèces, la cellule natale reçoit d'abord de la nourriture avant de recevoir l'œuf.

3.2. Les abeilles solitaires
Les abeilles des autres familles sont solitaires. Chez celles-ci, le nid construit sans l'aide d'ouvrières est composé d'une dizaine de cellules destinées à la ponte. Dans chacune d'elles, l'abeille place un peu de nourriture et pond un œuf. La future larve dispose ainsi de réserves alimentaires pour sa croissance, tandis que la femelle meurt avant que l'œuf soit éclos.
La plus solitaire de toutes les abeilles est la mégachile femelle, dite « coupeuse de feuilles », parce qu'elle creuse dans du bois en pleine décomposition des galeries qu'elle garnit de feuilles coupées et modelées en forme de dé à coudre. Ces feuilles serviront de berceaux aux nouveau-nés. La famille des mégachilidés, à laquelle appartient la mégachile, comprend aussi des abeilles maçonnes et est répandue un peu partout dans le monde.
Les collétidés – insectes peu évolués qui possèdent une langue courte et sont surtout nombreux dans l'hémisphère Sud – et les andrénidés qui vivent dans l'hémisphère Nord sont aussi des familles d'abeilles solitaires, comme celles, moins répandues, des mellitidés, des oxaéidés et des fidéliidés, petites familles sans nom vernaculaire.
Bien que considérés comme solitaires, les halictes (famille des halictidés), surnommés par les Anglais « abeilles de la sueur », sont proches des bourdons. On trouve, chez ces insectes, les premières ébauches d'une vie en société. La femelle fondatrice a une durée de vie analogue à celle de l'abeille mellifique et reste fidèle à son lieu de ponte toute son existence. Année après année, le nombre cumulé de ses enfants forme une sorte de colonie, et l'on assiste à une certaine répartition des tâches (ravitaillement, construction, soins aux jeunes) semblable à celle qui existe pour Apis mellifica. Toutefois, il n'y a pas, entre ouvrières, reine et mâles, de différences morphologiques marquées.

4. Origine et évolution des abeilles
Parmi les 6 familles des apoïdés, ou insectes qui se nourrissent de pollen et de nectar, celle des apidés regroupe toutes les abeilles, les solitaires et les « sociales », comme les abeilles du genre Apis, auquel appartient l'abeille mellifère ou mellifique, et celles de genres moins connus : Melipona, Trigona et Bombus, ou bourdons. Ainsi, pour les zoologistes, les bourdons, mâles et femelles, sont des abeilles. Il ne faut pas les confondre avec les faux-bourdons, qui sont les mâles chez les abeilles du genre Apis.
Comme l'explique le biologiste autrichien Karl von Frisch dans son livre Vie et Mœurs des abeilles, les ancêtres des abeilles sont probablement des insectes solitaires et prédateurs, telles les guêpes maçonnes. On ne sait pas exactement comment ou quand leur vie sociale a débuté.
Vers le milieu du crétacé, il y a 100 millions d'années, les plantes se sont répandues sur toute la terre. C'est à cette époque que s'est faite la différenciation entre les guêpes et les abeilles. Des abeilles fossiles ayant de nombreux points communs avec les formes actuelles d'Apis ont été trouvées en plusieurs endroits.
La première découverte a eu lieu dans les pays Baltes, où fut repéré un insecte emprisonné dans des morceaux d'ambre (résine fossile d'origine végétale), qui datait de l'éocène supérieur (– 70 millions d'années environ). Il devait avoir vécu en groupe, car, dans le même morceau d'ambre, étaient fossilisés à côté de lui cinq autres individus. On a donné à ces ancêtres d'Apis mellifica le nom d'Electreapis, ou abeille de l'ambre.
Certaines abeilles datant du miocène, inférieur et supérieur (entre – 25 et – 7 millions d'années), ont été découvertes en Allemagne occidentale, dans les schistes de Rott ; d'autres, retrouvées en France, dans le bassin aquitain, datent de l'oligocène (entre – 37 et – 25 millions d'années). Toutes ces abeilles fossiles étaient assez bien conservées.
Traditionnellement, le genre Apis, originaire d'Asie, ne comporte que 4 espèces, vivant toutes en société. Outre Apis mellifica, il y a Apis dorsata, l'abeille géante de l'Inde, Apis florea et Apis cerana, vivant en Inde elles aussi. On distingue, en outre, différentes races ou sous-espèces de Apis mellifica, appelées abeilles domestiques, parce qu'elles ont été « apprivoisées » par l'homme, qui en prend soin. L'une d'elles est l'abeille noire de France, ou Apis mellifica mellifica.

5. Les abeilles et l'homme
Précieuses auxiliaires de l'homme, qui en prend soin et exploite leurs produits depuis des millénaires, les abeilles ont aussi une place importante dans l'imaginaire des peuples, où elles sont, tour à tour, messagères des dieux ou symbole d'inspiration poétique.

5.1. Des insectes sacrés qui auraient nourri les dieux et les prêtres
Pour les Égyptiens de l'Antiquité, elles étaient nées des larmes de Rê, le dieu solaire qui les avait répandues sur la Terre, tandis que le prophète Mahomet déclare dans le Coran que « ce sont des insectes sacrés ». En Grèce, Melissa (qui signifie abeille) est une femme d'une incomparable beauté. Fille de Melissée, roi de Crète, elle aurait nourri Zeus de lait de chèvre et de miel, ce qui a laissé imaginer qu'elle aurait été transformée en abeille.
Tiré du miel, l'hydromel est, pour les Celtes comme pour les Égyptiens et les Grecs, la liqueur de l'immortalité. Et, représentées sur les tombeaux, les abeilles annoncent la survie après la mort : ne disparaissent-elles pas pendant les mois d'hiver pour ressusciter, en quelque sorte, vers le printemps ? Le monde chrétien est, lui aussi, frappé par les merveilles accomplies par cet insecte, véritable incarnation de l'âme, qui distille le suc des fleurs, comme l'âme rassemble le suc des fleurs de la réalité. Les chrétiens du Moyen Âge voient également dans le dard de l'abeille le symbole de l'exercice de la justice.
En dehors même de toute référence religieuse, l'abeille symbolise le souffle ou le feu de l'inspiration, oratoire, poétique ou philosophique. Une légende de l'Antiquité veut que, dans leur berceau, Pindare et Platon aient eu leurs lèvres effleurées par ces insectes.

5.2. Pour domestiquer les abeilles, les hommes ont construit les ruches
Avant la découverte du sucre de canne et de betterave, le miel a longtemps été pour l'homme l'unique source de sucre. D'où l'attention portée autrefois à ce produit qui ne servait pas seulement d'aliment : 2 000 ans avant J.-C., en Assyrie, les corps des morts célèbres étaient vernis à la cire, puis embaumés dans le miel, une coutume qui s'est perpétuée en Grèce pendant vingt siècles. De nos jours, c'est le service rendu à l'homme par la fécondation des fleurs qui passe au premier plan. Toutefois, la pollinisation des fleurs était déjà connue 5 000 ans avant J.-C., en pays Sumer.
Très tôt, pour éviter que la chasse au miel ne détruise ou ne perturbe les colonies, l'apiculteur a créé la ruche. La forme de ces nids artificiels a beaucoup évolué, des temps préhistoriques jusqu'à nos jours, sans que l'évolution, fruit de ressources locales et de l'ingéniosité humaine, ait été linéaire. Il fallait apporter une solution au problème posé par la préservation du couvain et des colonies. En effet, pour récolter le miel, l'apiculteur était autrefois obligé de détruire la ruche après avoir asphyxié les abeilles.
Au départ, on s'est contenté d'imiter les cavités naturelles recherchées par les abeilles, en récupérant les troncs creux qui avaient parfois déjà logé une colonie. Très primitives, ces premières « ruches-troncs » qui ont donné une variante, la « ruche-écorce », datent de la préhistoire, mais on en trouvait encore en France, au xive et au xve siècle. Puis sont apparues les caisses à planches verticales. L'adoption d'une croix de bois offrant une charpente aux abeilles pour l'aménagement des rayons a représenté une étape très importante. Dans certains cas, des baguettes remplacent les planches. Il s'agit sans doute d'une invention de peuples nomades, en quête d'un matériel léger, aisément transportable. L'armature des ruches est alors recouverte d'une protection étanche et isolante, confectionnée le plus souvent avec de la bouse de vache. En France, certains utilisent encore ces nids de forme conique. Dans les régions de culture céréalière, les apiculteurs sont passés rapidement des baguettes à la paille, notamment à la paille de seigle.
Puis les ruches à rayons fixes apparaissent. Composées de sortes de cubes empilés, elles comportent une calotte placée au-dessus du nid et communiquant avec lui. Celle-ci constitue un magasin supplémentaire, ce qui laisse plus de place pour le couvain et les réserves de miel dans le corps principal de la ruche.
L'apiculteur y récolte le miel sans porter préjudice au couvain. L'origine de telles ruches remonte au xiiie siècle en Italie, au xviie siècle en Angleterre.
La dernière étape de l'évolution est la ruche dite « à cadres mobiles » : elle est composée de pièces de forme variable (ronde, triangulaire, carrée), que l'apiculteur peut à sa guise déplacer et manipuler sans gêner toute l'activité du nid, tandis que les abeilles voient leur travail considérablement allégé, puisqu'elles n'ont qu'à compléter des alvéoles préconstruites...
Inventé en 1844 par un Français, M. Debeauvoys, et perfectionné sept ans plus tard par l'Américain Langstroth, ce type de ruche a fait considérablement progresser l'apiculture en la rendant plus précise. Pourtant, il a eu de nombreux détracteurs.
Au xixe siècle, les « fixistes », nom donné aux apiculteurs qui utilisent les ruches à rayons fixes, se sont opposés aux « mobilistes », les défenseurs des ruches à cadres mobiles. Aujourd'hui encore, le débat n'est pas clos, si l'on en juge par l'ouvrage d'un spécialiste, Alain Caillas. Le Rucher de rapport, paru dans les années 1950, comporte toute une partie où le fixisme est passé en revue et critiqué par l'auteur.

5.3. La lutte contre les maladies parasitaires et les autres menaces
Le travail d'entretien d'une ruche implique aussi la lutte contre de nombreuses maladies. Les plus graves sont l'acariose, la vaorrase, la nosémose et la loque américaine. Cette dernière est due à un microbe et attaque le couvain à tous les stades de son développement. Un autre microbe est à l'origine de la nosémose qui s'en prend aux voies digestives. L'acariose, qui touche les trachées de l'abeille et entraîne la mort par asphyxie, est une maladie parasitaire. C'est le cas également de la vaorrase, véritable fléau dont sont actuellement victimes, partout dans le monde, des colonies entières détruites en quelques années – entre trois et cinq ans.
Le responsable en est le vaorra, qui suce le sang des insectes. Il a été découvert à Java, en 1904, par Edward Jacobson. À l'époque, ce parasite vivait sur Apis cerana, mais ne mettait pas en péril la vie de ses colonies. Soixante ans plus tard, le vaorra est détecté sur Apis mellifica qui a dû s'y exposer en pillant des colonies de Apis cerana. La maladie se propage à une vitesse extraordinaire dans le monde entier – des îles de la Sonde en Asie, jusqu'en France. Le 1er novembre 1965, elle faisait son apparition au nord de l'Alsace et, un an après, au sud, dans la région du Var. L'agent de cette propagation est la femelle du parasite qui, après s'être accouplée, s'introduit dans le nid, sur une abeille, et commence à infecter le couvain. Les larves du vaorra se développent sur la larve d'abeille, entraînant des malformations. Puis elles se nourrissent de l'hémolymphe des abeilles adultes, qu'elles épuisent et infectent.
Les traitements élaborés pour détruire ce parasite sont d'ordre chimique et n'ont été efficaces qu'à 70 %. De plus, ils ne sont pas sans risque pour le miel qu'ils polluent et peuvent perturber le fonctionnement de la colonie. C'est pourquoi les recherches du Centre national de la recherche scientifique (C.N.R.S.) et de l'Institut national pour la recherche agronomique (I.N.R.A.) font appel à la biologie pour trouver d'autres remèdes. L'objectif est d'attirer et de piéger les parasites à l'entréede la ruche avant qu'ils n'y pénètrent, et d'utiliser certaines substances pour les neutraliser.
Par ailleurs, outre les parasites et les virus, d'autres menaces pèsent sur les abeilles : ainsi, la raréfaction des plantes qui leur fournissent nectar et pollen (liée à la monoculture et l'utilisation d'herbicides) et les épandages de pesticides sont parmi les facteurs qui contribuent à réduire les populations de pollinisateurs.  D'où  les recommandations adoptées par la FAO en 1996, l'interdiction, en France, du Gaucho et du Régent sur certaines cultures entre 1999 et 2006 ainsi que la prise en compte du rôle des abeilles dans la préservation de la biodiversité comme dans le programme ALARM (pour « Assessing Large scale environmental Risks for biodiversity with tested Methods ») lancé en 2004 sur 5 ans à l'échelle européenne et confié à 80 organismes de recherche afin d'évaluer les risques encourus par la biodiversité terrestre et aquatique et l'impact économique de son éventuel déclin.

5.4. L'apiculture et ses vertus thérapeutiques
Les produits de la ruche ont de nombreux pouvoirs thérapeutiques qui ont été connus dès les premiers temps, puisque, dans l'Égypte ancienne, ils entraient dans la fabrication des onguents.
Aisément assimilé par l'organisme, le miel est riche en calories (300 Cal pour 100 g). C'est un produit énergétique très apprécié des sportifs. Il agit également comme laxatif, sédatif, et donne de l'appétit. Il est généralement absorbé par voie buccale. Aux États-Unis et en Allemagne, il peut aussi être injecté.
Les miels unifloraux ont des qualités qui sont liées à leur provenance. Ainsi, le miel d'eucalyptus est utilisé en cas de maladies respiratoires ; celui de l'origan et de la sarriette soigne les rhumatismes et la goutte, et le miel de ronce, les maux de gorge.
Adoptée surtout en dermatologie, la cire améliore la consistance des pommades. Quant à la propolis, elle est précieuse pour les vétérinaires comme anesthésique local, par exemple, ou pour cicatriser une plaie et lutter contre les hémorragies ; elle est exploitée en médecine comme fongicide et comme antibiotique.
Le venin de l'abeille a longtemps servi de base à certains traitements des rhumatismes. D'éminents savants grecs et latins, comme Celse, Galien ou Hippocrate y font allusion dans leurs ouvrages. De tels traitements existent aujourd'hui encore.
Enfin, les thérapeutes apprécient naturellement le pollen et la gelée royale. De par sa constitution (protides, glucides, quelques lipides, vitamines, matières minérales, oligo-éléments), le pollen, que les apiculteurs recueillent en posant une grille à l'entrée de la ruche – obligeant ainsi les butineuses à se débarrasser de leur fardeau – est essentiellement un fortifiant. Il favorise la croissance et agit comme régulateur sur les fonctions intestinales. Comme le miel, il peut être unifloral, avec des propriétés liées à son origine.
Composée d'eau, de protides, de quelques lipides, de substances minérales, d'oligo-éléments et de vitamines, la gelée royale – dont la récolte est difficile – est un produit riche pouvant servir d'antibiotique. C'est un remède efficace contre la fatigue et pour retrouver l'appétit (on conseille de le donner aux bébés).

5.5. Les chasseurs de miel
Au pays des Gurungs, sur les contreforts sud de l'Himalaya, les techniques de récolte du miel de Mani Lâl, Népalais de 63 ans, remontent aux origines de l'apiculture. Accompagné de toute une équipe, il se rendait d'abord près d'une falaise vertigineuse après avoir traversé la jungle, pieds nus. Là, au cours d'une cérémonie rituelle, il offrait des présents à Pholo, divinité locale, et lisait les présages dans les poumons d'un coq. Puis, il descendait jusqu'au nid d'abeilles, suspendu à une échelle de grosse corde en fibres de bambou. Le nid, construit à même le rocher, mesurait 1,60 m de large sur 1,30 m de haut. Le chasseur ne portait qu'une cape de laine feutrée qu'il rabattait par-dessus sa tête pour se protéger, et 2 perches de bambou pour détacher le couvain. Ses compagnons lui faisait descendre un panier tapissé de cuir qu'il plaçait au-dessous du nid. Mani Lâl éventrait les alvéoles d'où le miel et la cire coulaient en abondance. Puis, toujours accroché à sa corde, il devait maîtriser la remontée du panier chargé d'une vingtaine de litres de liquide, qui risquait en le percutant de le déséquilibrer.

5.6. La découverte du langage dansé des abeilles
La découverte de la danse de l'abeille et celle de son langage ont, au début du  xxe siècle, fait progresser la compréhension des insectes et celle de tout le monde animal. Dans ses Mémoires, le biologiste autrichien Karl von Frisch décrit les premières observations qui furent à l'origine de cette découverte. Il s'était fait prêter une boîte spéciale, munie de deux fenêtres de verre, qui lui permettait d'observer des deux côtés le mouvement des abeilles sur leur rayon de miel : « J'en attirai quelques-unes, raconte-t-il, jusqu'à une coupelle d'eau sucrée et les marquai d'un point de peinture à l'huile rouge ; après quoi, j'interrompis l'apport de nourriture. Quand tout fut redevenu tranquille près de la coupelle, je la remplis de nouveau et j'observai le retour à la ruche d'une abeille qui était venue en éclaireuse et avait bu à la coupelle. Je n'en crus pas mes yeux ! L'abeille se mit à danser en rond, entourée des abeilles marquées qui témoignèrent d'une grande excitation, et provoqua leur envol vers la coupelle pleine. » (Mémoires, 1973).

 

DOCUMENT   larousse.fr    LIEN

 
 
 
 

STEVEN LAUREYS « Détecter la conscience lorsqu'elle s'enfuit »

 

 

 

 

 

 

 

STEVEN LAUREYS « Détecter la conscience lorsqu'elle s'enfuit »
Marie-Laure Théodule dans dossiers 15
daté octobre - novembre 2015 -

Difficile de déterminer si les personnes prostrées après un coma possèdent un certain niveau de conscience. Le neurologue Steven Laureys les évalue après une série d'examens et livre son diagnostic.
LA RECHERCHE : La définition de la conscience est-elle en train d'évoluer ?
STEVEN LAUREYS : La définition de la conscience n'existe pas. Il y a différentes approches selon que l'on s'adresse à un philosophe, à un médecin, à un biologiste, à un ingénieur en intelligence artificielle, etc. Et ces différences reflètent notre ignorance : on ne comprend pas le phénomène.

Et dans votre domaine, la neurologie ?
S. L. Il existe aussi plusieurs approches. Ainsi, en clinique, on pense savoir ce que cela veut dire quand on déclare qu'une personne est consciente. Elle doit être éveillée et réagir à la commande, c'est-à-dire aux ordres donnés par le médecin. Par exemple, s'il lui demande de pincer sa main, elle doit le faire. Mais ce test a des limites : la personne peut ne pas obéir parce qu'elle est paralysée, sourde ou qu'elle ne comprend pas la commande.
Dans la recherche, on se sert de différentes méthodes pour étudier la conscience. La plus utilisée approche le phénomène par soustraction : on présente des stimuli à des volontaires sains de manière à ce que la moitié seulement de ces stimuli soit perçue consciemment, et on observe avec l'imagerie par résonance magnétique fonctionnelle (IRMf) les différences d'activation des cerveaux dans les deux cas. Cela permet d'extraire ce qu'on pense être le corrélat neuronal de la conscience chez le sujet sain. En réalité, cela n'apporte des informations que sur une conscience réduite, limitée à la conscience de voir ou pas une lettre, un mot, etc. Mais s'agit-il d'attention, de mémoire, ou de conscience ? Une autre approche - et c'est celle que nous partageons - consiste à étudier le phénomène dans sa globalité, notamment en s'intéressant aux états altérés de conscience, par exemple dans le coma, sous anesthésie ou lorsqu'on dort.

Qu'a-t-on déjà compris avec cette approche du phénomène dans sa globalité ?
S. L. Nos moyens de mesure se sont améliorés grâce à la neuro-imagerie. Nous avons compris que la conscience se passe dans un réseau. Ce serait une propriété qui émerge à partir d'assemblées de neurones dans un vaste réseau reliant plusieurs zones du cortex dit « associatif »* - les régions préfrontales et temporopariétales -, soit directement, soit en passant par le thalamus. On a observé lors de nombreuses expériences que ce réseau s'active moins quand la personne n'est pas consciente. Et dans ce réseau, à l'arrière du préfrontal, se trouve une région particulièrement intéressante : elle comporte le précuneus et le cortex cingulaire postérieur, et c'est elle qui s'active le plus quand la personne est consciente et qui est la plus atteinte lors d'une série d'états altérés de conscience. Cette région semble donc être un noeud critique du réseau. Mais ce qui est important, ce n'est pas tant l'activité spécifique de chaque région que leur connectivité, c'est-à-dire la manière dont elles dialoguent entre elles directement et aussi via le thalamus. Or on ne connaît pas le code neuronal de ce réseau, ni comment fonctionne cette communication. Aujourd'hui, on sait donc où se passe la conscience, mais il nous reste à comprendre le langage que les neurones utilisent pour établir cette conscience.

Mais vous, en tant que médecin et chercheur, qu'attendez-vous de cette approche ?
S. L. Sur un plan clinique, elle nous aide à déterminer si une personne restée prostrée après un coma possède encore un certain niveau de conscience, ce qui est très important pour la suite des traitements. Au niveau scientifique, elle nous permet de détecter ce qui change dans le cerveau des patients éveillés selon qu'ils sont ou non conscients, donc d'approcher les corrélats neuronaux de la conscience.

On n'est donc pas toujours conscient quand on est éveillé ?
S. L. Non, l'exemple le plus dramatique, c'est le patient qui se réveille de son coma mais reste en état végétatif : la personne a les yeux grands ouverts mais l'esprit est absent. C'est perturbant, car vous avez devant vous quelqu'un qui regarde dans le vide, et qui bouge et respire seulement par réflexe. Cet état a été défini dans les années 1970. Puis en 2002, une autre entité a été définie, l'état de conscience minimale. Il est très proche de l'état végétatif car les personnes sont éveillées mais elles ne peuvent communiquer ni verbalement ni non verbalement. Cependant, elles sourient parfois quand leur mère est dans la pièce, peuvent vous suivre du regard ou vous pincer la main sans être capables pour autant d'établir un code avec ce pincement. Elles manifestent donc plus que des mouvements réflexes. Pourtant, on ne peut pas communiquer avec elles, d'où cette appellation de conscience minimale.

Que se passe-t-il dans leur cerveau ?
S. L. Qu'elles soient en état végétatif ou en conscience minimale, ces personnes se réveillent le jour et dorment la nuit. C'est donc que leur tronc cérébral qui gère le système veille/sommeil est resté actif. Mais lorsqu'elles sont en état végétatif, le réseau cérébral qui relie le thalamus aux zones frontopariétales ne fonctionne plus, qu'il y ait des lésions dans le cortex ou dans le réseau lui-même. L'état végétatif est donc considéré comme un syndrome de déconnexion. En revanche, en état de conscience minimale, certaines zones du cerveau sont encore actives.

Quelles sont ces zones encore actives ?
S. L. On ne peut répondre clairement à cette question. Dans l'état végétatif, l'information arrive du thalamus jusque dans les aires corticales primaires*, mais elle ne va pas plus loin. En conscience minimale, elle va plus loin mais pas de manière permanente : les personnes semblent avoir de temps en temps des bouffées de conscience, comme cela se produit chez les déments.
Nous avons observé en 2006 qu'une patiente anglaise déclarée en état végétatif activait certaines zones de son cerveau quand on lui demandait de s'imaginer jouer au tennis, ou de se déplacer dans sa maison : elle activait les mêmes zones qu'une personne consciente qui s'imagine accomplir ces deux actions. Elle était donc consciente. Depuis cette expérience, nous avons constaté que, dans 40 % des cas, les patients diagnostiqués en état végétatif montraient en réalité des signes de conscience. Mais il s'agit d'une conscience minimale et fluctuante, ce qui rend l'examen difficile : parfois la personne répond à la commande, parfois non. Et en général, elle réagit plus aux stimuli chargés d'émotions, ce qui peut expliquer que la famille observe des réactions que le médecin ne voit pas. Même si parfois la famille voit ce qu'elle a envie de voir et qui n'existe pas !

En 2009, on a découvert à la télévision française des images assez poignantes de Rom Houben, un Belge de 46 ans qui, après être resté prostré pendant vingt-trois ans, a finalement montré des signes de conscience. Que s'est-il passé ?
S. L. J'ai examiné Rom Houben en 2007 dans notre centre de Liège. Et alors qu'il avait été déclaré en état végétatif, donc sans signe extérieur de conscience, j'ai diagnostiqué qu'il était dans un état bien plus élevé que la conscience minimale : son cerveau est actif et fonctionne presque normalement, comme l'a révélé un examen par tomographie à émission de positons. Son état est proche du syndrome d'enfermement ou Locked-in Syndrome (LIS)*. Je ne l'ai ni sauvé, ni guéri, ni refait communiquer comme on l'a prétendu, mais mon diagnostic a convaincu son entourage médical qu'il était toujours conscient. Et cela lui a donné accès à des soins de rééducation appropriés. Comme je le disais plus haut, aujourd'hui on sait que la réponse à la commande simple n'est pas un test infaillible pour évaluer si la personne est consciente ou non.

Comment faire, alors, pour détecter des signes de conscience ?
S. L. Nous utilisons désormais une approche à la commande couplée avec l'imagerie cérébrale : au lieu de demander à la personne de bouger un bras et d'observer si elle le fait, on lui demande de penser à une action et on observe par IRM si son cerveau réagit. Nous avons aussi recours à une technique portable plus légère qui mesure par électroencéphalographie les potentiels évoqués cognitifs : on place un casque à électrodes sur le cuir chevelu des patients et on mesure l'activité électrique du cerveau quand on leur fait entendre certains mots.
On a d'abord constaté que, lorsque les gens entendent leur propre prénom, cela déclenche une onde dans leur cerveau, appelée onde P3 ou P300, car on l'observe 300 millisecondes après la présentation du stimulus, même lorsqu'ils sont en état végétatif, ou qu'ils dorment. Il s'agit donc d'une réponse automatique et non d'un signe de conscience comme on l'espérait. En revanche, un prénom non familier ne déclenche aucune onde spécifique dans le cerveau. Donc, partant de ces constatations, nous avons imaginé un test où l'on demandait à des patients en état végétatif et en conscience minimale et à des témoins de compter le nombre de fois où ils entendaient un prénom précis mais non familier dans une suite de prénoms. Or nous avons observé une onde P3 chez les témoins et chez les patients en état de conscience minimale très sévèrement atteints, mais non chez les patients en état végétatif. C'est donc qu'en état de conscience minimale, le patient a compris et exécuté la commande. Et depuis, nous utilisons ce test car notre démarche consiste à garder cette vision simpliste : si le cerveau d'un patient répond à la commande, alors c'est un signe de conscience.

Êtes-vous sûr de l'efficacité de ce test ?
S. L. Il a fait ses preuves avec une jeune patiente de 23 ans hospitalisée au CHU de Liège pour une hémorragie après un accident vasculaire cérébral. On m'a appelé pour me demander mon avis. En voyant les images de l'IRM, j'ai observé que la lésion était très étendue : elle touchait le tronc cérébral et le thalamus, sans toutefois atteindre le cortex. Mais la jeune femme était toujours dans le coma après un mois et demi et n'ouvrait pas les yeux. J'ai soupçonné un LIS complet, dans lequel les noyaux crâniens touchés empêchent même l'ouverture et le mouvement des yeux. Je pensais qu'elle était quand même consciente et nous avons fait le test de comptage du prénom avec un casque à électrodes. Là, j'ai vu une réponse. Donc, pour moi, elle était encore consciente et il fallait continuer à l'alimenter et à l'aider à respirer. Maintenant, elle vit chez elle et communique avec des mouvements du pied.

Ce système portable change-t-il votre approche de la conscience ?
S. L. Oui, d'une certaine manière. Cela signifie que la conscience peut se détecter par une réponse du cerveau à la commande. Cependant, il faut répéter les tests au moins cinq fois à différents moments de la journée pour être sûr de ne pas se tromper. Et cela change notre comportement face à des cas très graves comme celui de cette jeune fille.

Les gens en état de conscience minimale enregistrent-ils de nouveaux souvenirs ?
S. L. On ne le sait pas. Car la conscience et la mémoire ne sont pas la même chose. Mais je pense que la plupart des gens en état de conscience minimale n'enregistrent pas de souvenirs, car la continuité de leur vécu subjectif est rompue puisque leur conscience ne fonctionne souvent que par intermittence.
Et lorsqu'on dort ?
S. L. Il y a plusieurs phases dans le sommeil. Je suis convaincu que, quand on dort en sommeil lent, on perd la conscience de son environnement, de même que sous anesthésie. En revanche, en sommeil paradoxal, il y a un vécu subjectif qui est réel mais très particulier, dont on peut garder des souvenirs conscients au réveil.

Comment faites-vous aujourd'hui, dans votre centre de Liège, pour détecter le niveau de conscience après un coma ?
S. L. Nous disposons de tout un arsenal de moyens techniques et humains pour évaluer les comateux et les post-comateux. Nous accueillons donc ici des gens qui viennent de toute l'Europe parce que leur famille veut savoir où ils en sont. Pendant une semaine, ils subissent des tests et des examens afin de détecter le moindre signe de conscience. Par exemple, on teste la poursuite visuelle avec un miroir que l'on déplace de quelques degrés pour voir si la personne suit ou non du regard, on teste la réponse à la douleur, au prénom, etc. Puis il y a l'imagerie cérébrale dont nous avons déjà parlé. Et nous faisons aussi des essais pharmacologiques. Nous passons ensuite une semaine à interpréter les résultats afin de délivrer un nouveau diagnostic et un pronostic le plus objectif possible.

Des essais pharmacologiques de quelle nature ?
S. L. Nous avons découvert fortuitement en 2006 qu'une benzodiazépine (le Zolpidem commercialisé sous le nom de Stilnox), donnée à un patient en état de conscience minimale pour le calmer avant un examen, pouvait avoir un effet « miracle » : la personne s'est remise soudain à parler, à répondre à des questions, à marcher. L'effet est maximal une demi-heure après l'administration du médicament et ne dure que quelques heures. Mais cela ne marche que pour certaines personnes en état de conscience minimale et on ne comprend pas encore pourquoi.

Finalement, si, à l'issue de vos tests, vous établissez qu'il y avait une erreur de diagnostic, qu'est-ce que cela change au traitement ?
S. L. Cela devrait tout changer. Après un coma, si les gens se réveillent et restent en état végétatif, au début on les aide à respirer avec un respirateur artificiel et on les nourrit artificiellement avec une sonde dans l'estomac. Mais si l'état se prolonge sans espoir de récupération, souvent on arrête le traitement et on laisse les gens mourir de déshydratation, car on a de bonnes raisons de penser qu'ils ne souffrent pas dans cet état. Au contraire, s'ils sont diagnostiqués en conscience minimale, il faudrait s'occuper d'eux dans des centres de rééducation spécialisés et les protéger contre la souffrance. Le problème, c'est qu'aujourd'hui, on manque de centres de cette nature.
* LE CORTEX ASSOCIATIF est la partie supérieure du cortex, qui donne du sens aux informations sensorielles venant du cortex primaire.
* LE CORTEX PRIMAIRE est composé des aires primaires et motrices qui traitent les informations liées aux mouvements et aux perceptions sensorielles.
* LE LIS (Locked-in Syndrome ou syndrome d'enfermement) désigne un état où les personnes sont complètement paralysées mais pleinement conscientes ; elles ne peuvent communiquer avec l'extérieur que par le clignement des yeux.

 

 DOCUMENT   larecherche.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon