|
|
|
|
|
|
UN NOUVEAU CAPTEUR... |
|
|
|
|
|
Paris, 08 novembre 2012
Un nouveau concept de capteur pour détecter des molécules d'intérêt médical et agroalimentaire
L'agroalimentaire et la médecine sont toujours à la recherche de méthodes plus efficaces pour détecter des biomolécules. Pour répondre à ces besoins, un nouveau concept de capteurs miniaturisés vient d'être mis au point par des chercheurs du LAAS-CNRS et de l'Université Toulouse III - Paul Sabatier, en collaboration avec la société HEMODIA spécialisée dans le développement de dispositifs médicaux. Ces capteurs peuvent mesurer dans une solution la concentration d'une gamme de molécules telles que le glucose, le lactate ou le glutamate pouvant servir à établir des diagnostics médicaux ou présentant un intérêt pour l'industrie agroalimentaire. Ce dispositif, appelé ElecFET, associe, pour la première fois, un microcapteur d'acidité et une microélectrode métallique présentant sur sa surface une enzyme spécifique à la molécule recherchée. L'avancée technologique est liée à l'imbrication de ces deux composants à l'échelle micrométrique sur une puce électronique en silicium. Ces travaux sont publiés le 08 novembre 2012 dans la revue Biosensors & Bioelectronics.
L'ElecFET (transistor électrochimique à effet de champ) repose sur une réaction chimique entre la biomolécule recherchée et une enzyme de la famille des oxydases capable de la dégrader. La surface de la microélectrode du dispositif présente une couche enzymatique spécifique de la molécule recherchée. Lorsque la molécule s'approche de l'électrode, l'enzyme la capture et la dégrade. Cette réaction produit du peroxyde d'hydrogène, mieux connu sous le nom d'eau oxygénée (H2O2). Le peroxyde est alors oxydé sur l'électrode grâce à une polarisation électrique adaptée, ce qui libère des ions hydroniums H3O+ et entraine une augmentation de l'acidité au voisinage de l'électrode. C'est ce pic d'acidité que le microcapteur de pH associé au dispositif détecte. Ainsi, en fonction de la chute de pH mesurée, l'ElecFET détermine la concentration de la molécule étudiée.
Au-delà du concept innovateur, l'ElecFET constitue une avancée technologique car elle permet, dans un volume extrêmement restreint (inférieur au microlitre), de dégrader la molécule recherchée, de contrôler l'oxydation du peroxyde ainsi produit et de mesurer la variation locale de pH associée. En cela, il est nécessaire que l'imbrication de l'électrode et du capteur pH se fasse à l'échelle micrométrique. Ces deux composants sont finalement intégrés sur une puce silicium, ce qui rend le dispositif compatible avec les technologies de la microélectronique.
L'ElecFET permet de détecter des molécules dans différentes gammes de concentration qui vont de la micromole à la mole par litre (1). L'avantage de ce système par rapport aux technologies actuelles est lié au contrôle potentiel de la réaction: en modifiant la polarisation de la microélectrode, il est possible de changer la gamme de détection du dispositif, et de pallier ainsi à une possible trop faible activité de l'enzyme utilisé. Testé par les chercheurs pour la détection du glucose, du lactate et du glutamate, le dispositif ElecFET a démontré une précision de mesure comparable à celle des technologies actuelles.
De nombreuses applications en médecine et dans l'agroalimentaire sont envisageables avec l'ElecFET. Par exemple, connaître la concentration en glucose dans le sang, ce qui est vital pour les patients diabétiques. Le lactate, que l'on retrouve dans la sueur, est un marqueur du stress physiologique qui décrit, par exemple, l'état de fatigue d'un sportif. Le glutamate est un neurotransmetteur excitateur du système nerveux central dont l'analyse en continu est nécessaire pour le diagnostic de différents désordres neurologiques tels que la maladie d'Alzheimer. Sur le plan de l'agroalimentaire, le lactate est un marqueur de tous les procédés basés sur la fermentation lactique, tandis que le glutamate est un vecteur du goût umami (2). L'éventail de molécules détectées par l'ElecFET pourrait finalement être élargi à l'ensemble des enzymes de la famille des oxydases, ouvrant de nombreuses potentialités d'application.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
LE PENDULE DE FOUCAULT |
|
|
|
|
|
LE PENDULE DE FOUCAULT
VIDEO YOUTUBE LIEN
VIDEO DAILYMOTION LIEN
|
|
|
|
|
|
|
MICROELECTRONIQUE |
|
|
|
|
|
Paris, 12 janvier 2011
Microélectronique : un gaz d'électrons à la surface d'un isolant ouvre la voie du transistor multi-fonctions
Des chercheurs du CNRS et de l'Université Paris-Sud 11 (1) ont découvert comment créer une couche conductrice à la surface d'un matériau isolant et transparent très étudié pour la microélectronique du futur, le titanate de strontium (SrTiO3). Cette couche conductrice de deux nanomètres d'épaisseur est un gaz d'électrons métallique bidimensionnel qui fait partie du matériau. Facilement réalisable, elle ouvre des perspectives pour l'électronique à base d'oxydes de métaux de transition (la famille de SrTiO3), qui cherche à profiter de l'énorme variété des propriétés physiques de ces matériaux (supraconductivité, magnétisme, thermoélectricité, etc.) pour intégrer plusieurs fonctionnalités différentes dans un même dispositif microélectronique. Cette découverte inattendue, mise en évidence au synchrotron SOLEIL, est publiée dans la revue Nature du 13 janvier 2011.
Aujourd'hui, les composants microélectroniques sont fabriqués à base de couches de semi-conducteurs déposées sur un substrat de silicium. Afin de poursuivre l'accroissement périodique des performances des composés microélectroniques au-delà de 2020, des solutions technologiques alternatives sont à l'étude. Les chercheurs travaillent de plus en plus sur les oxydes de métaux de transition (2), qui présentent des propriétés physiques intéressantes comme la supraconductivité (3), la magnétorésistance (4), la thermoélectricité (5), la multi-ferroïcité (6), ou encore la capacité photo catalytique (7).
Parmi les oxydes des métaux de transition, le titanate de strontium (SrTiO3) est très étudié. C'est un isolant, mais il devient bon conducteur en le dopant (en créant quelques lacunes d'oxygène par exemple). Les interfaces entre le SrTiO3 et d'autres oxydes (LaTiO3 ou LaAlO3) sont conductrices, même si les deux matériaux sont isolants. En plus, elles présentent de la supraconductivité, de la magnétorésistance, ou de la thermoélectricité avec de très bons rendements à température ambiante. Seulement voilà : les interfaces entre oxydes sont très difficiles à réaliser.
Une découverte inattendue vient de faire sauter ce verrou technologique. Une équipe internationale pilotée par des scientifiques du CNRS et de l'Université Paris-Sud 11 vient de réaliser un gaz d'électrons métallique bidimensionnel à la surface de SrTiO3. Il s'agit d'une couche conductrice de deux nanomètres d'épaisseur environ, obtenue en cassant un morceau de titanate de strontium sous vide. Ce procédé, très simple, est peu coûteux. Les éléments qui constituent SrTiO3 sont disponibles en grande quantité dans les ressources naturelles et c'est un matériau non toxique, contrairement aux matériaux les plus utilisés aujourd'hui en microélectronique (les tellurures de bismuth). En outre, des gaz d'électrons métalliques bidimensionnels pourraient probablement être créés de façon similaire à la surface d'autres oxydes de métaux de transition.
La découverte d'une telle couche conductrice (sans avoir à rajouter une couche d'un autre matériau) est un grand pas en avant pour la microélectronique à base d'oxydes. Elle pourrait permettre de combiner les propriétés intrinsèques multifonctionnelles des oxydes de métaux de transition avec celles du métal bidimensionnel à sa surface. On peut songer, par exemple, au couplage d'un oxyde ferro-électrique avec le gaz d'électrons à sa surface, pour faire des mémoires non volatiles, ou à la fabrication de circuits transparents sur la surface des cellules solaires ou des écrans tactiles.
Les expériences de photoémission résolue en angle (ARPES) qui ont servi à mettre en évidence le gaz d'électron métallique bidimensionnel ont été réalisées d'une part au synchrotron SOLEIL (Saint-Aubin, France), et au Synchrotron Radiation Center (Université du Wisconsin, USA).
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
SPIN ET GRAPHENE |
|
|
|
|
|
Paris, 05/06/2012
L'information de spin semble trouver enfin son support pour l'électronique de demain : le graphène
Avec des centaines de millions de disques durs vendus chaque année et la prolifération des data-centers de géants de l'internet, le magnétisme reste aujourd'hui, de loin, la principale source de stockage de l'information à l'échelle mondiale. C'est en fait le « spin », le nano-aimant élémentaire du magnétisme, qui porte cette information. Bien au delà du stockage, il est pressenti comme l'un des vecteurs possibles de l'information pour l'électronique à faible consommation de demain. Cependant malgré plusieurs décennies de recherche intense, cet avènement se heurte au paradoxe de l'information de spin : alors même qu'elle est la plus prisée dans le stockage pour son caractère non-volatile, elle s'est révélée être des plus volatiles lorsqu'on cherche à la transporter. Des chercheurs de l'Université Paris-Sud, du CNRS et de Thales, en collaboration avec des collègues américains du GeorgiaTech, montrent que le graphène pourrait être le media idéal permettant d'envisager à terme la réalisation d'architectures complexes et de logiques s'appuyant sur le traitement d'informations à base de spin. Ces travaux viennent d'être publiés sur le site de la revue Nature physics.
Le traitement de l'information de spin est un paradigme possible pour l'électronique post-CMOS (complementary metal-oxide semiconductor)(1) et le transport efficace du spin sur de longues distances est un élément fondamental de cette vision. Cependant, malgré plusieurs décennies de recherche intense, une plateforme appropriée restait encore à trouver.
Des scientifiques de l'unité mixte de physique CNRS/Thales associée à l'Université Paris-Sud, de l'Institut Néel (CNRS), du laboratoire Thales Research and Technology et du Georgia Institute of Technology (USA) ont étudié le transport de spin dans des structures à deux terminaux de type polariseur / analyseur basés sur du graphène à haute mobilité obtenu par croissance épitaxiale sur du carbure de silicium. Ils ont démontré que le transport de spin dans le graphène est efficace jusqu'à 75% avec des signaux de spin de l'ordre du mega-ohm et des longueurs de diffusion de spin de plus 100 micromètres.
Ces résultats, fruits d'une collaboration entre spécialistes de l'électronique de spin et du graphène, permettent enfin de lever un verrou et d'entrevoir une plateforme potentielle pour le traitement de l'information de spin : le graphène, cette couche de carbone monoatomique avec une structure de nid d'abeille. La spintronique(2) associée au graphène pourrait être pressentie comme l'un des vecteurs possibles de l'information pour l'électronique à faible consommation de demain.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 ] Précédente - Suivante |
|
|
|
|
|
|