ecole de musique piano
     
menu
 
 
 
 
 
 

Le conscient et l’inconscient travaillent de concert pour trier les images

 

 

 

 

 

 

 

Le conscient et l’inconscient travaillent de concert pour trier les images


COMMUNIQUÉ | 06 DÉC. 2017 - 18H47 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Notre cerveau est constamment bombardé d’informations sensorielles. Loin d’être surchargé, le cerveau est un véritable expert dans la gestion de ce flux d’informations. Des chercheurs de Neurospin (CEA/Inserm) ont découvert comment le cerveau intègre et filtre l’information. En combinant des techniques d’imagerie cérébrale à haute résolution temporelle et des algorithmes d’apprentissage automatique (machine learning), les neurobiologistes ont pu déterminer la séquence d’opérations neuronales qui permet au cerveau de sélectionner spécifiquement l’information pertinente. La majeure partie de l’information est traitée et filtrée inconsciemment par notre cerveau. Au sein de ce flux, l’information pertinente est sélectionnée par une opération en trois étapes, et diffusée vers les régions associatives du cerveau afin d’être mémorisée. Ces observations sont décrites dans Nature Communications le 5.12.2017.

Les chercheurs ont mesuré l’activité du cerveau de 15 participants, pendant que ces derniers devaient repérer une image « cible » dans un flux de 10 images par seconde . Les neurobiologistes ont ainsi pu observer trois opérations successives permettant aux participants de traiter et de trier le flux d’images :

► Même si une dizaine d’images est présentée chaque seconde, chacune de ces images est analysée par les aires sensorielles du cerveau pendant environ une demi-seconde. Ceci constitue une première phase de traitement automatique, inconscient et sans effort pour nous.

► Lorsqu’on demande aux participants de porter attention et de mémoriser une image en particulier, ce n’est pas uniquement l’image ‘cible’ qui est sélectionnée, mais toutes les images qui sont encore en cours de traitement dans les régions sensorielles. L’attention du sujet aura pour effet d’amplifier les réponses neuronales induites par ces images.

► La troisième phase de traitement correspond au rapport conscient du sujet. Seule l’une des images sélectionnées induit une réponse cérébrale prolongée et impliquant les régions pariétales et frontales. C’est cette image que le sujet indiquera avoir perçue.
« Dans cette étude, nous montrons que le cerveau humain est capable de traiter plusieurs images simultanément, et ce de manière inconsciente », explique le chercheur Sébastien Marti, qui signe cette étude avec Stanislas Dehaene, directeur de Neurospin (CEA/Inserm). « L’attention booste l’activité neuronale et permet de sélectionner une image spécifique, pertinente pour la tâche que le sujet est en train d’accomplir. Seule cette image sera perçue consciemment par le sujet », poursuit le chercheur.
Assailli par un nombre toujours croissant d’informations, notre cerveau parvient ainsi, malgré tout, à gérer le surplus de données grâce à un filtrage automatique, sans effort, et un processus de sélection en trois phases.

Les avancées technologiques en imagerie cérébrale et dans les sciences de l’information ont donné un formidable coup d’accélérateur à la recherche en neuroscience, et cette étude en est un bel exemple.

 

 DOCUMENT      inserm     LIEN 

 
 
 
 

L'IMPACT DE LA GÉNÉTIQUE SUR LES THÉRAPIES

 

 

 

 

 

 

 

L'IMPACT DE LA GÉNÉTIQUE SUR LES THÉRAPIES


Depuis 1990, nous avons tenté de mettre la génétique moléculaire au service de la pédiatrie et de concilier génétique clinique et génétique moléculaire. Ces efforts ont conduit à réunir dans un même lieu i) une Unité de Recherches de l'INSERM consacrée à la localisation et à l'identification de gènes responsables de handicaps neurologiques, métaboliques, malformatifs et sensoriels de l'enfant, ii) un Service de Génétique Clinique de l'Assistance Publique-Hôpitaux de Paris, iii) une Unité de Génétique Moléculaire hospitalière pré et postnatale au service des patients et des familles Grâce aux progrès de la carte génétique, notre groupe a pu localiser et/ou identifier près d'une trentaine de gènes responsables de maladies, particulièrement l'achondroplasie (1/15000 naissances, récepteur de facteur de croissance fibroblastique 3), la maladie de Hirschsprung (1/5000 naissances, oncogène Ret), l'amyotrophie spinale (1/6000 naissances, survival motor neuron, SMN), la paraplégie spastique liée au sexe (proteolipid protein), le syndrome de Holt-Oram (brachyury), la maladie des exostoses multiples, la dystrophie maculaire de Stargardt et, plus récemment, l'amaurose congénitale de Leber (guanylate cyclase de rétine), la craniosténose de Saethre-Chotzen (twist), l'incontinentia pigmenti (NEMO) et le syndrome de Pearson (délétion de l'ADN mitochondrial), ainsi qu'une série de gènes nucléaires (SDH.Fp, SCO1, COX10, BcS1) responsables de mitochondriopathies. Tout récemment, nous avons démontré que l'ataxie de Friedreich résultait d'une attaque des centres fer-soufre mitochondriaux par une surcharge en fer et avons pu proposer un traitement curateur de la myocardiopathie spécifique de cette affection. Nous avons également eu la chance de décrire la première encéphalomyopathie mitochondriale curable par les quinones. Quels sont les bénéfices de ces travaux pour les enfants et leurs familles ? La localisation et/ou l'identification de ces gènes rend le conseil génétique possible et permet chaque année à 350 couples à risque d'attendre sereinement l'enfant qu'ils espèrent, dans le cadre du diagnostic prénatal et préimplantatoire pour lequels nous sommes habilités. Ces avancées permettent surtout d'envisager l'approche thérapeutique de ces maladies génétiques, comme par exemple la réexpression du gène centromérique homologue du gène SMN sur le chromosome 5q13 dans l'amyotrophie spinale ou une approche pharmacologique rationnelle du traitement de l'ataxie de Friedreich.

Transcription de la 517 e conférence de l'Université de tous les savoirs donnée le 14 janvier 2004
Arnold Munnich « L'impact de la génétique sur les thérapies »
Les maladies génétiques touchent 3 à 4 % des nouveaux nés, soit 30 000 nouveaux cas par an en France et près de 25 à 30 millions de citoyens européens. Considérées individuellement, chacune des 5 000 maladies génétiques recensées est rare puisqu'elle affecte un très faible nombre d'individus, mais considérées collectivement elles constituent un enjeu majeur de santé publique. Les enjeux de santé publique qui ont occupé dans l'immédiat après-guerre, la malnutrition, l'alcoolisme, la tuberculose, la mortinatalité liée aux infections périnatales, sont aujourd'hui éradiqués. Contrairement aux maladies infectieuses comme la variole ou la poliomyélite, les maladies génétiques ne pourront jamais disparaître car à chaque génération surviennent des mutations. Les individus porteurs sains de ces gènes modifiés constituent le grand réservoir des maladies génétiques. Les idéologies d'épuration qui sont absolument monstrueuses sont également absurdes dans la mesure où nous sommes tous potentiellement porteurs de gènes de maladies.

La génétique et l'étude du génome sont des sujets particulièrement à la mode ces dernières années conduisant à des progrès considérables. L'important est de savoir maintenant quel a été ou sera le bénéfice de cette accumulation de connaissances pour les patients.
Le premier bénéfice pour les enfants, pour les sujets, est l'accès à un diagnostic plus simple et plus rapide. Le diagnostic de la plupart des maladies génétiques, comme la myopathie, la mucoviscidose, l'amyotrophie spinale, nécessitait il y a encore quelques années plusieurs jours d'hospitalisation pour réaliser une série d'explorations douloureuses, tels les biopsies, les électromyogrammes. Aujourd'hui, une simple prise de sang permet aux spécialistes de faire un diagnostic fiable et rapide pour les maladies monogéniques qui résultent de l'effet d'un seul gène ou de quelques gènes qui ont été identifiés.
Figure 1 : Quelle maladie ?

Maladie    Fréquence    Diagnostic classique    Test ADN
Myopathie    1/4 000    Biopsie musculaire    +
Mucoviscidose    1/2 500    Test de la sueur    +
Amyotrophie spinale    1/6 000    Biopsie musculaire, EMG    +
Hémochromatose    1/5 000    Biopsie du foie    +
Fragilité du chromosome X    1/5 000    Caryotype    +
Stienert    1/5 000    Biopsie musculaire, EMG    +
Huntington    1/10 000    Évolution clinique    +
Incontinentia P    1/10 000    Biopsie cutanée    +
Achondroplasie    1/10 000    Radios du fStus    +

Malheureusement, un grand nombre de maladies dites génétiquement hétérogènes sont causées par une combinaison de dizaines ou centaines de gènes. Cette extraordinaire complexité rend très difficile l'identification des gènes responsables et plus encore le diagnostic.
Figure 2 : Une maladie, plusieurs gènes

Maladie    Gènes impliqués    Études familiales    Test ADN
Bourneville    2 gènes    +/-    +
Os de verre    2 gènes    +/-    +/-
Ataxie    > 10 gènes    +/-    +
Paraplégie    > 10 gènes    +/-    -
Déficit énergétique    > 100 gènes    +/-    +/-
Retard mental    > 100 gènes    +/-    +/-
Rétinopathies    > 100 gènes    +/-    -

L'identification des gènes responsables de chacune des 5 000 maladies génétique est un enjeu de la recherche théorique et un enjeu de santé publique car elle est indispensable au conseil génétique. La connaissance des gènes impliqués permet de prodiguer aux couples ayant déjà un ou plusieurs enfants atteint d'une maladie génétiquement hétérogène le conseil génétique et le diagnostic prénatal nécessaires pour éviter la récidive.
Pour répondre au mieux à la complexité de ce sérieux problème de santé publique il faut coordonner les efforts des chercheurs et des cliniciens. L'organisation sanitaire et le partage des responsabilités et du travail entre les différents groupes de génétique hospitaliers à Paris et en province est nécessaire pour le typage des maladies génétiques.

L'organisation des différents acteurs n'est rien si elle ne s'accompagne pas d'une meilleure détermination des personnes ayant réellement besoin d'un test ADN. Il n'est en effet pas question de faire des examens génétiques à des porteurs sains n'ayant plus de projets d'enfants ou bien à des personnes potentiellement porteuses d'un gène mais qui ne tireront aucun bénéfice réel de l'identification du gène en cause. Au contraire, il est important d'identifier le gène lorsqu'un couple a perdu un, deux ou trois enfants d'une maladie génétiquement hétérogène et qu'il attend avec angoisse l'espoir d'avoir enfin un enfant bien portant.
Les associations de malades jouent un rôle capital aux côtés des pouvoirs publics et des chercheurs. Ainsi, le Téléthon qui est la vitrine médiatique de l'association française contre la myopathie a joué un rôle décisif dans la lutte contre les maladies génétiques par l'identification des gènes de ces maladies.

La recherche médicale permet d'identifier des gènes. Le transfert de ces connaissances scientifiques au bénéfice des familles dépend, quant à lui, du champ de la santé publique et à ce titre devrait être pris en charge financièrement par les structures hospitalières.
En matière de génétique, entre l'accumulation impressionnante des connaissances sur les causes de maladies et la faible quantité des thérapeutiques, il y a un espace pour la prévention.
La prévention intervient par exemple dans le cas de familles dont plusieurs sujets ont développé par exemple un cancer du sein, un cancer du colon, une néoplasie endocrinienne ou une hémochromatose. Le diagnostic d'un risque génétique dans ces familles permet d'identifier les sujets à risque qu'il faudra suivre avec beaucoup d'attention. La prise en charge d'un sujet qui n'est pas encore symptomatique mais que l'on sait porteur du gène d'une maladie présente des bénéfices mais également des risques.
Les principaux bénéfices concernent les personnes atteintes d'une maladie génétique à début tardif ou d'évolution variable dont on pourra anticiper l'évolution. Dans le cas de l'hypertension artérielle par exemple, il sera possible de prendre en charge le patient dès l'apparition des premiers symptômes. Dans le cas de maladies pour lesquelles nous ne disposons pas encore de traitement comme un risque de surdité, une rétinite pigmentaire ou la Chorée de Huntington dont les symptômes apparaissent à l'adolescence ou au début de l'âge adulte, il sera possible d'orienter la scolarité ou la formation professionnelle de ce jeune homme ou de cette jeune fille.

La question se pose, dans le cas où la connaissance n'apporte pas de bénéfice thérapeutique, de déterminer qui au juste veut savoir. S'agit-il de l'enfant ou bien de ses parents ? Il faut identifier la demande sans l'anticiper et déterminer les intérêts divergents qui peuvent habiter les uns et les autres. Avant de faire une prise de sang qui demande cinq minutes il faut parfois une, deux ou trois consultations pour décider si le sujet souhaite réellement bénéficier du test. Ainsi, dans le cas de la Chorée de Huntington il n'y a que 18 % des sujets qui viennent en consultations qui à l'issue des entretiens maintiennent leur souhait d'un test pré-symptomatique. Si être un généticien signifie faire des prouesses scientifiques, il s'agit également de réfléchir à l'impact de notre connaissance, de nos savoirs sur la qualité de vie de nos contemporains. Dans bien des cas, prédire signifie médire et pas guérir. De plus, le fait d'être porteur du gène d'une maladie ne signifie pas ipso facto que cette dernière va s'exprimer. Une autre raison d'être prudent et d'utiliser ces tests avec infiniment de circonspection.
L'usage que notre société va faire de ces tests reste encore une inconnue. Les généticiens devront peut-être un jour rendre des comptes à des mutuelles d'assurance maladie, à des caisses d'assurance maladies, à des sociétés de recrutement. Que deviendra le secret médical lorsque le fait d'être diabétique, hypertendu ou le risque de développer un Alzheimer ou un Parkinson sera considéré comme incompatible avec l'exercice d'une activité professionnelle par une entreprise ? Lorsque la connaissance n'apporte pas un traitement de nature à guérir la maladie la prudence doit rester de mise.

la  prévention  prénatale
 et préimplantatoire intervient dans le cas de familles perdant plusieurs enfants âgés de quelques jours à quelques mois de la même maladie. Si le diagnostic est précis, si la demande est justifiée, la loi autorise des centres de référence avec des experts de la génétique obstétrique et de la génétique à procéder à l'interruption médicale de grossesse pour des fStus atteints d'affection d'une particulière gravité. Il ne s'agit pas d'une victoire de la génétique mais d'un moindre mal pour éviter aux couples de subir un nouveau deuil.

Le diagnostic génétique préimplantatoire consiste en une fécondation in vitro de gamètes d'un couple à fort risque de donner naissance à un enfant atteint. Après la fécondation, une cellule est prélevée de l'embryon pour faire le test. À la suite de ce diagnostic prénatal ultra précoce, seuls les embryons indemnes de la maladie sont transférés dans l'utérus maternel. Contrairement au diagnostic prénatal, les mères n'ont donc pas à subir l'épreuve d'une nouvelle interruption médicale de grossesse. Le taux de réussite d'une telle procédure est très faible, environ 20%, et uniquement 30% des couples optent pour des grossesses naturelles à l'issue des consultations d'information. La France est le dernier pays européen à avoir autorisé les diagnostics préimplantatoires et ce dans deux services : Un centre réunissant l'Hôpital Necker-Enfants malades à Paris et l'Hôpital Antoine Béclère à Clamart et un centre à Strasbourg. Les membres de ces centres sont à l'écoute des couples pour leur proposer toutes les stratégies, une meilleure compréhension des possibilités en rendant la médecine génétique plus humaine.

Les avancées scientifiques permettant les diagnostics génétiques constituent une source majeure de problèmes éthiques pour demain. Entre le scientifiquement possible et l'éthiquement souhaitable il y a un monde. Il appartiendra à notre génération et à la suivante de déterminer les bonnes indications et le bon usage que collectivement nous ferons de ces progrès.

Les risques de dérives sont nombreux, notamment le diagnostic de complaisance du sexe et la généralisation des diagnostics génétiques sur cellules fStales circulant dans le sang maternel, comme cela est déjà le cas dans les pays anglo-saxons. Il ne faudrait pas qu'au motif d'une stérilité dans le couple la fécondation in vitro soit assortie de diagnostics préimplantatoires pour des affections qui ne sont pas d'une particulière gravité voire totalement bénignes. Ces débats, notamment dans le cas des cancers non génétiques, ont fait la une des médias à la fin de l'année 2003. Il était alors question d'autoriser les tests de compatibilité HLA pour le futur frère ou sSur d'un enfant atteint de cancer par exemple dans la maladie de Fanconi. Cet enfant serait accueilli comme le messie par ses parents car non seulement il serait sain mais il permettrait également à son aîné de guérir. Cependant, si le législateur a donné un accord pour l'extension du diagnostic génétique préimplantatoire au typage HLA dans certaines indications de particulière gravité, il s'agit uniquement des cas de cancers génétiques et pas des leucémies. Nous devons rester vigilant car nous ne basculerons pas dans l'horreur du jour au lendemain et chaque citoyen doit mesurer la responsabilité qui pèse sur les généticiens et sur l'ensemble de la société car nous sommes les garants du meilleur usage possible de ces pratiques.

Le séquençage du génome humain, l'identification et le clonage des gènes responsables de maladies ont donné de nombreux espoirs pour le développement de thérapeutiques. Avant d'envisager la thérapie génique pour après-demain, il faut nous rendre à l'évidence que les thérapies d'aujourd'hui et de demain, si elles sont bien dérivées des connaissances du génome, restent des thérapies tout à fait traditionnelles. Les généticiens travaillent non pas déjà à guérir les 30 000 enfants malades qui viennent au monde chaque année, mais à mettre en place des tests permettant de reconnaître les enfants qui seraient susceptibles d'être guéris. En l'état actuel des connaissances et des traitements, il y a entre 1 et 10 % des maladies génétiques qui peuvent être curables par des traitements traditionnels. Nous allons présenter cinq stratégies thérapeutiques actuellement utilisées, avant d'aborder la thérapie génétique et enfin terminer par la pharmacologie traditionnelle qui reste à ce jour le plus grand espoir des malades.

Un petit nombre de maladies génétiques du métabolisme sont curables par un régime ou bien par des vitamines. Ces traitements font l'effet de véritables miracles. Il est difficile de rendre compte de l'impression ressentie par les soignants lorsqu'un enfant qui était donné pour mort se remet à marcher, que ses symptômes disparaissent et qu'il est guéri, comme cela m'est arrivé. Les doses de vitamines impliquées sont bien évidemment pharmacologiques et dépassent largement les comprimés utilisés par les étudiants pour affronter plus sereinement les examens. De même, si un enfant sur 200 subit un retard mental il est possible pour quelques uns d'entre eux de guérir de ce handicap par l'apport de vitamines. Les spécialistes doivent pouvoir disposer de d'avantage de moyens pour identifier ceux parmi ces enfants qui seraient curables avec l'administration de ces médicaments.

Figure 3 : Maladies métaboliques curables par les régimes diététiques

Hypoprotidiques    Phénylcétonurie, leucinose, hyperammoniémies
Hypolipidiques    Hypercholestérolémies
Hyperglucidiques    Anomalies de l'oxydation des acides gras

Figure 4 : Maladies métaboliques curables par les vitamines

Biotine (B8)    Déficit multiple des carboxylases
Pyridoxine (B6)    Homocystinurie
Cobalamine (B12)    Acidurie organique
Tocophérol (E)    Ataxie pseudo-Friedrich
Carnitine    Myopathie lipidique, cardiomyopathie
Quinone (CoQ10)    Ataxie, déficits énergétiques
Créatine    Retard mental

Les transplantations d'organes, de rein, de foie, de cSur, de moelle osseuse et même de systèmes nerveux, peuvent permettre à certains patients de retrouver une vie normale. Des neurochirurgiens de Montpellier ont récemment tenté une expérience sur un adolescent atteint de dystonie de torsion. Les principaux symptômes de cette maladie sont un recroquevillement des mains et des pieds ainsi qu'une torsion de la bouche. L'équipe de Philippe Cook s'est basée sur des expériences récentes pour guérir la maladie de Parkinson et ont implanté un pacemaker dans le noyau gros central. Les malades atteints de dystonie de torsion, de dystonie par déficit en penthoténate kinase, de la Chorée de Huntington ou de maladies mitochondriales ont une modification du noyau postéro-ventral du Globus Palidum - ansa lenticularis, qui est responsable d'une perte du tonus. Le pacemaker introduit par les chirurgiens au niveau de l'abdomen et relié à une électrode dans le cerveau permet à ces adolescents de retrouver l'usage de leurs mains et de leurs pieds. Cet appareil coûte 7 500 euros et doit être changé tous les 5 ans. C'est peu pour rendre une vie normale à ces enfants.
Figure 5 : Transplantation d'organes/néo-organes

Rein    Polykystose, néphronophtisie, Alport
Foie    Déficit en a1AT, atrésie biliaire, maladies métaboliques
CSur    CMO, malformations, déficits énergétiques
Moelle osseuse    Décifits immunitaires, maladies de surcharge
Système nerveux    Pace-maker cérébral

Les progrès de la génétique ont également permis de produire des protéines et des médicaments par génie génétique, évitant ainsi le prélèvement par exemple d'enzymes sur des cadavres. C'est le cas notamment du facteur VIII pour les hémophiles, de l'insuline pour les diabétiques et de l'hormone de croissance.

Des déficits enzymatiques, tels la maladie de Fabry, la maladie de Gaucher, la maladie de Pompe ou la maladie de Hurter, peuvent être guéris par des injections régulières des enzymes déficientes. Dans le cas de la maladie de Pompe il s'agit de remplacer les enzymes chargées de détruire les contenus des lysosomes, les poubelles des cellules. Les injections qui sauvent la vie aux malades ont lieu tous les quinze jours et coûtent 150 000 euros par an. Ce n'est rien face à la vie d'un enfant mais c'est beaucoup lorsqu'on considère l'ensemble des malades. Pour guérir cette myopathie avec une grande détresse cardiaque à un coût supportable par la société il faut mettre en concurrence les sociétés pharmaceutiques pour faire baisser les prix.
La thérapie génique est la voie d'avenir, j'en suis intimement convaincu. Cependant, il y a un fossé entre les espérances, les promesses et les résultats. De nombreux problèmes techniques ne sont pas résolus. Le choix du vecteur n'est pas fait. Il faut trouver le moins dangereux, le plus adapté à chaque cas. Toutes les maladies ne sont pas de bonnes cibles pour la thérapie génique. Les bébés bulles constituent le premier modèle d'expérimentation. Une fois le vecteur et la maladie choisis, il faut ensuite trouver de bons modèles animaux et ne pas négliger les risques. Les premiers essais aux États-Unis ont été des catastrophes puisqu'un jeune homme qui souffrait d'hyperammonie héréditaire est mort de l'administration de virus recombinant pour le gène de l'ETC. Les immunologistes de l'Hôpital Necker-Enfants malades déplorent quant à eux deux leucémies sur les sept premiers enfants traités par thérapie génique pour le déficit immunitaire. En effet, lorsque le virus portant le gène guérisseur est rentré dans le génome de la moelle osseuse il s'est inséré au niveau d'un gène du cancer qui s'est ainsi activé. Ces résultats nous incitent à retarder les prochains essais afin de mieux cibler les gènes dans le génome avant de généraliser les procédures de thérapie génique.
Nous ne pouvons que constater le fossé entre les connaissances extraordinaires de la génétique et l'arsenal relativement limité dont nous disposons. Nous ne pouvons donc pas miser tous nos efforts sur la thérapie génique et négliger la pharmacologie traditionnelle dont les résultats ne sont plus à prouver et dont nous allons donner quelques exemples.

Un chercheur canadien, Francis Glorieux, a étudié la maladie des os de verre. Les malades, tel le pianiste Petrucciani, font des dizaines voire des centaines de fractures par an pour les cas les plus graves. Le chercheur a observé qu'un médicament, les biphosphonates, inhibait la fonction osthéoclastique des os, leur capacité à se résorber eux-mêmes. Si les malades ne peuvent pas régénérer leurs os, il a pensé qu'il serait judicieux de les empêcher de les détruire. Il a réussi à consolider les os en tuant les cellules entourant les os et qui sont habituellement chargées de les détruire. En mourrant elles constituent une gaine protectrice qui empêche les os de se briser. Ce médicament ne guérit pas la maladie mais permet de limiter ses symptômes.
De même, des généticiens ont eu l'idée d'utiliser un antibiotique, la gentamycine, pour lutter contre certaines formes de mucoviscidose. Cet antibiotique a la particularité d'agir au niveau des cellules pour favoriser la transcription de gènes en passant outre des signaux stop du code génétique. En ne tenant pas compte de ces signaux, il permet dans le cas qui nous intéresse la fabrication de protéines certes imparfaites mais qui permettent d'assurer une partie de leurs fonctions et ainsi de lutter contre les symptômes de certaines formes de mucoviscidose en en limitant les effets.

Dans mon équipe, nous avons étudié le syndrome de Smith Magénis. Les enfants atteints par cette maladie ont une délétion d'une partie du chromosome 17 et présentent un retard mental, un retard du langage, de l'hyperactivité, de l'agressivité et de l'automutilation. Ils sont inscolarisables, ils mordent leurs frères et sSurs, leurs parents et eux-mêmes. De plus, ils présentent des troubles du sommeil qui les font dormir le jour et être éveillés la nuit. Leurs problèmes de sommeil et d'agressivité rendent la vie impossible à eux-mêmes et à leur famille. Les études en laboratoire ont permis de découvrir que leurs troubles du sommeil étaient dus à une inversion du rythme de sécrétion de l'hormone du sommeil, la mélatonine. La plupart de leurs symptômes étaient simplement dus au fait que leur entourage ne cessait de les réveiller lorsqu'ils avaient sommeil. Un traitement à base de bêtabloquant pour les empêcher d'avoir sommeil le jour et de mélatonine pour leur donner envie de dormir la nuit a permis de rétablir un cycle artificiel de veille/sommeil basé sur l'alternance jour/nuit. Les enfants ainsi traités ont perdu l'essentiel de leur agressivité ce qui a rendu possible leur scolarisation. Les familles ont également repris une vie normale.

Les progrès de la compréhension des mécanismes favorisent de nouvelles thérapeutiques qui ne sont pas nécessairement génétiques. Ce qui est important pour les malades, pour leurs familles ce n'est pas uniquement de trouver des remèdes mais déjà de savoir que des scientifiques travaillent et cherchent à comprendre les maladies incompréhensibles.
La science fait fi de tous les dogmatismes. Elle ignore les plans quadriennaux, les programmes de recherche, elle nous prend au dépourvu, nous réserve de mauvaises surprises. Raison de plus pour faire feu de tout bois et ne négliger aucune piste.

Les financements sont nécessaires mais pas suffisants. Comme Lavoisier le disait, « les découvertes ne se commandent pas ». Il ne suffit pas de financer une thématique pour que les résultats soient au rendez-vous. Ils viennent souvent des groupes les plus modestes, les plus petits comme ces neurochirurgiens qui s'attaquent à la dystonie de torsion.
La science est narquoise, impertinente et insolente. Elle brouille les cartes.

Enfin, « la science n'est pas bonne ou mauvaise » comme le dit Henri Atlan, elle est bonne et mauvaise à la fois. L'usage qui en est fait peut cependant menacer notre société : le mauvais usage des tests génétiques s'ils étaient généralisés, la généralisation de médicaments sans les tests suffisants. La science va se poursuivre que vous le vouliez ou non, les chercheurs sont curieux et continueront leurs recherches en dépit des moratoires, des décisions, des ultimatums. Ce qui compte, et là où la communauté scientifique et les citoyens sont convoqués, c'est de faire en sorte que de cette science soit fait collectivement un bon usage et non un usage pervers. « Le meilleur des savants, le plus grand des savants, reçoit l'enfer en héritage. »

 

 VIDEO       CANAL  U         LIEN

 
 
 
 

SYSTÈME NERVEUX

 

 

 

 

 

 

 

SYSTÈME  NERVEUX


PLAN
          *         SYSTÈME NERVEUX
          *         NEUROLOGIE
          *         1. Le système nerveux central
          *         1.1. La moelle épinière
          *         1.2. L’encéphale
          *         1.2.1. Le tronc cérébral
          *         1.2.2. Le cervelet
          *         1.2.3. Le cortex cérébral
          *         1.2.4. Le système limbique
          *         1.2.5. Le diencéphale : le thalamus et l’hypothalamus
          *         1.2.6. L’hypophyse
          *         2. Le système nerveux périphérique
          *         3. Principes fonctionnels du système nerveux
          *         3.1. Système nerveux somatique
          *         3.2. Système nerveux végétatif
          *         3.3. La coordination des mouvements
          *         3.4. La transmission de l'information
          *         3.4.1. Circuits neuronaux simples et rapidité d'action
          *         3.4.2. Circuits neuronaux en boucle
          *         3.5. L'organisation des systèmes
          *         EMBRYOLOGIE
          *         Développement du système nerveux
          *         ASPECTS MÉDICAUX
          *         1. Examens du système nerveux
          *         2. Pathologie du système nerveux
          *         ZOOLOGIE

système nerveux

Cet article fait partie du dossier consacré au système nerveux.
Ensemble des nerfs, ganglions et centres nerveux qui assurent la commande et la coordination des fonctions vitales, de l'appareil locomoteur, la réception des messages sensoriels et les fonctions psychiques et intellectuelles (P.N.A. systema nervosum).

NEUROLOGIE

L’ensemble des informations issues du monde extérieur comme du milieu intérieur sont analysées en permanence par le système nerveux pour donner naissance à la perception, à la mémoire, et, quand c’est nécessaire, induire des comportements moteurs (→ motricité) et des pensées. Ces différentes fonctions du système nerveux résultent de l'activité des cellules qui le composent. Il s'agit bien sûr en premier lieu des interactions entre les neurones, mais également des relations entre les neurones et les cellules gliales.
Le système nerveux comprend deux grandes parties : le système nerveux central et le système nerveux périphérique. Il existe une continuité fonctionnelle entre ces deux compartiments.

Le système nerveux central est formé de substance grise et de substance blanche, le tout étant compris dans un tissu de soutien, la névroglie. Ses grandes unités morphologiques et fonctionnelles sont l’encéphale (protégé par la boîte crânienne) et la moelle épinière (incluse dans la colonne vertébrale). Le système nerveux périphérique, qui rassemble les nerfs, est constitué de substance blanche.

1. Le système nerveux central
Encore appelé névraxe, le système nerveux central (S.N.C.) est formé de milliards de neurones (cellules nerveuses) connectés entre eux et d'un tissu de soutien interstitiel (névroglie). Il comprend l'encéphale (cerveau, cervelet, tronc cérébral), protégé par le crâne, et la moelle épinière, long cordon blanchâtre d'environ 40 à 45 centimètres de long enveloppé dans une gaine méningée et logé dans la colonne vertébrale.

1.1. La moelle épinière

La moelle épinière est incluse dans la colonne vertébrale (ou rachis), qui la protège, mais elle n’occupe pas sa longueur totale : elle s'étend de la base du crâne à la première vertèbre lombaire. Il existe une nette segmentation, facilement observable grâce aux 31 paires de nerfs spinaux (ou nerfs rachidiens). À chaque étage de la moelle épinière, la jonction de la racine dorsale et de la racine ventrale forme le tronc nerveux périphérique. Les informations sensitives atteignent la moelle par la racine dorsale. La racine ventrale, formée par les axones des motoneurones, des neurones sympathiques préganglionnaires et des neurones parasympathiques, oriente, à l'inverse, la commande motrice vers les muscles et les viscères.

L'intérieur de la moelle épinière est constitué de deux parties : l'une, périphérique et blanche ; l'autre, centrale et grise. La première contient les cordons nerveux postérieurs – qui remontent vers les centres supérieurs et transmettent les informations sensitives – et antérieurs, qui descendent depuis le cerveau en étant porteurs d'afférences motrices. La seconde partie, appelée substance grise, se présente sous la forme d'un papillon, où les informations sensitives arrivent par les cornes dorsales, tandis que la commande motrice se projette vers ses organes cibles à partir des cornes antérieures.

1.2. L’encéphale

L’encéphale est la partie du système nerveux central incluse dans la boîte crânienne (ou crâne). Dans le langage courant, cerveau et encéphale sont deux termes équivalents, mais au sens strict, le cerveau ne correspond qu’à une partie de l’encéphale : les hémisphères cérébraux (à l’exclusion du tronc cérébral et du cervelet). [→ cerveau.]

1.2.1. Le tronc cérébral

Situé au-dessus de la moelle épinière, le tronc cérébral est composé de bas en haut par le bulbe rachidien, puis le pont de Varole, ou protubérance annulaire, auquel est appendu en arrière le cervelet, et, enfin, par les pédoncules cérébraux. À la place des nerfs rachidiens, on trouve les nerfs crâniens, voies d'entrée des informations sensitives de la face et du cou, ainsi que des informations sensorielles (vue, audition, équilibre, goût), mais aussi voies de sortie des commandes motrices correspondantes (mouvement des yeux, de la tête et du cou, de la langue, commande de l'axe pharyngo-laryngé).
Le tronc cérébral est également un lieu de relais pour les voies nerveuses longues, issues ou destinées aux étages sous-jacents. Il sert aussi de centre intégrateur pour différentes fonctions vitales et inconscientes : il comprend, par exemple, un système neuronal diffus, appelé formation réticulée, jouant un rôle majeur dans les phénomènes de sommeil et d'éveil. Le bulbe abrite les centres de contrôle de la pression artérielle et de la respiration.

1.2.2. Le cervelet

Le cervelet se présente comme un petit cerveau, avec des hémisphères et un axe médian, le vermis. Il reçoit toutes sortes d'informations motrices et positionnelles issues des centres cérébraux, de la moelle épinière et des organes de l'équilibre. Il joue un rôle majeur dans le contrôle du tonus musculaire, de la posture, de l’équilibre, du déroulement harmonieux du mouvement. L'ivresse alcoolique et les symptômes qu'elle induit correspondent à un dysfonctionnement cérébelleux.

1.2.3. Le cortex cérébral

Le cortex cérébral est la partie la plus développée du système nerveux central des mammifères, et plus particulièrement de l'homme. Il existe à ce niveau des régions directement impliquées dans la réception de l'information ou dans l'élaboration de la commande motrice. On parle alors de cortex primaire : moteur au niveau du lobe frontal, sensitif pour le lobe pariétal, visuel pour l'occipital, auditif pour le temporal. Mais la majeure partie du cortex est dévolue à des tâches associatives (cognitives), qui mettent en relation plusieurs aires corticales et qui permettent, au-delà de la sensation, la perception, puis la comparaison avec des traces mnésiques (relatives à la mémoire), l'émotion, puis finalement l'élaboration de comportements complexes impliquant des processus d'idéation (formation des idées).

1.2.4. Le système limbique

Sous-jacents au cortex, plus internes mais fonctionnellement liés, on trouve les ganglions de la base, ou noyaux gris centraux, et le système limbique. Les ganglions de la base (noyau caudé, putamen, globus pallidus, noyau sous-thalamique) sont principalement impliqués dans le contrôle moteur ; leur atteinte provoque selon les cas l'absence de mouvement, comme l'akinésie-rigidité de certains syndromes parkinsoniens, ou des mouvements anormaux involontaires, du tremblement à la chorée.
Le système limbique, aboutissement de multiples voies issues de différentes régions cérébrales, est principalement représenté par l'hippocampe, l'amygdale et le septum. Il est en relation directe avec l'hypothalamus et se trouve ainsi au carrefour des souvenirs, des émotions et du contrôle des systèmes végétatif (rythme cardiaque, respiratoire, ouverture des pupilles) et hormonal.

1.2.5. Le diencéphale : le thalamus et l’hypothalamus

Dans le cerveau, on distingue une région centrale, le diencéphale, organisée autour du thalamus et de l'hypothalamus.
Le thalamus est un relais obligé de toutes les afférences sensorielles et sensitives et de toutes les commandes motrices allant vers le cortex cérébral ou venant de celui-ci.
L'hypothalamus, plus ventral, est le centre organisateur de toutes les fonctions autonomes (les fonctions vitales de l’organisme, indépendantes de la volonté, comme la digestion et la respiration) et l'interface entre le système nerveux et le système endocrinien (contrôle des sécrétions hormonales). Il reçoit de multiples informations issues du thalamus, du cortex cérébral et du bulbe, et bien sûr du système nerveux autonome.

1.2.6. L’hypophyse
Structure et localisation

L'hypophyse (nommée autrefois pituite ou glande pituitaire) est une glande dont les faibles dimensions (celles d'un gros pois) sont sans rapport avec son importance physiologique. Cette petite structure de forme arrondie (diamètre d'environ 1,3 cm chez l'homme) est située à la base du cerveau, un peu à la manière d'un fruit appendu à sa branche ; en effet, une véritable tige en forme d'entonnoir (tige pituitaire, ou infundibulum tubérien) la rattache à la masse cérébrale sus-jacente (hypothalamus), établissant les rapports vasculaires et neurosécrétoires indispensables à leur coopération étroite (complexe hypothalamo-hypophysaire).

Hormones libérées par l’hypophyse

L’hypophyse émet un nombre élevé d’hormones. Les hormones sécrétées par l'hypophyse antérieure (ou antéhypophyse sont) : la corticotrophine (ou corticostimuline, ACTH), qui stimule le cortex des glandes surrénales ; l'hormone mélanotrope ou MSH (de l'anglais melano-stimulating hormone), qui agit sur la pigmentation de la peau ; l'hormone somatotrope (STH), ou hormone de croissance (GH), qui règle la croissance corporelle ; la thyréostimuline (ou hormone thyréotrope, TSH), qui régit la glande thyroïde ; la prolactine (PRL), qui entretient la lactation ; les hormones gonadotropes : hormone folliculostimuline (FSH), qui stimule la production des ovules et des spermatozoïdes dans les ovaires et les testicules, et hormone lutéotrope (LH), qui stimule les autres activités sexuelles et reproductrices.
Les hormones relâchées par l’hypophyse postérieure (ou posthypophyse) sont : l'ocytocine (OT), qui stimule la contraction des cellules des muscles lisses dans l'utérus de la femme enceinte durant le travail, et des cellules contractiles des glandes mammaires pour permettre l'éjection du lait pendant l'allaitement ; et l'hormone antidiurétique (ou vasopressine, ADH), qui a un effet sur le volume urinaire (diurèse), et qui élève la pression artérielle en comprimant les artérioles durant une hémorragie grave. Une fois produites dans l'hypothalamus, ces deux hormones sont transportées par les fibres nerveuses jusque dans l'hypohyse postérieure, et emmaganisées dans les terminaisons axonales.

Le complexe hypothalamo-hypophysaire
L'hypophyse est considérée comme le « chef d'orchestre » de la commande endocrinienne. Elle est soumise au contrôle neurochimique des sécrétions du système nerveux (→ rétrocontrôle hormonal), avec lequel elle entretient des rapports si étroits qu'il est légitime de voir en l'hypophyse et l'hypothalamus (auquel elle est anatomiquement liée) un seul organe fonctionnel : le complexe hypothalamo-hypophysaire.

2. Le système nerveux périphérique

Prolongement du système nerveux central, le système nerveux périphérique comprend l'ensemble des nerfs et de leurs renflements (ganglions nerveux). Les nerfs, rattachés par une extrémité au système nerveux central, se ramifient à l'autre extrémité en une multitude de fines branches innervant l'ensemble du corps. Il existe des nerfs crâniens et des nerfs rachidiens. Ces derniers, au nombre de 31 paires, se divisent en une branche postérieure et une branche antérieure. Les branches antérieures peuvent rester indépendantes (nerfs intercostaux) ou s'anastomoser en plexus (brachial, lombaire, sacré).

3. Principes fonctionnels du système nerveux

Selon leur organisation et leur fonctionnement, on distingue le système nerveux somatique, qui met l'organisme en communication avec l'extérieur, et le système nerveux végétatif, ou autonome, qui régule les fonctions viscérales.

       
Le fonctionnement du système nerveux fait intervenir une chaîne de neurones, qui s'articulent entre eux par des synapses. Le neurone assure la conduction de l'influx nerveux et la synapse assure la transmission de cet influx soit d'un neurone à l'autre, soit d'un neurone à l'organe-cible, par exemple le muscle dans le cas d'une synapse neuromusculaire.
→ plaque motrice.
Cette transmission est réalisée par l'intermédiaire d'une substance chimique appelée neurotransmetteur (acétylcholine, adrénaline, noradrénaline). L'acétylcholine est le neurotransmetteur du système nerveux volontaire et du système parasympathique, qui commande la contraction des fibres musculaires lisses et les sécrétions glandulaires. L'adrénaline et la noradrénaline sont les neurotransmetteurs du système sympathique, qui, entre autres fonctions, assure la contraction de la paroi des artères et intervient dans la sécrétion de la sueur.

3.1. Système nerveux somatique

Le système nerveux somatique commande les mouvements et la position du corps et permet de percevoir par la peau diverses sensations (toucher, chaleur, douleur) et de découvrir par les autres organes des sens le milieu environnant (vision, audition, olfaction). Il est constitué de neurones sensitifs et de neurones moteurs.
Les neurones moteurs comprennent, d'une part, le système pyramidal, faisceau de fibres nerveuses formé par les cellules pyramidales du cortex moteur (circonvolution frontale ascendante, lobe frontal) et responsable de la motricité volontaire ; d'autre part le système extrapyramidal, une des structures responsables du maintien des attitudes, de la motricité involontaire et des mouvements associés. L'ordre, pour le système pyramidal, va du cortex moteur à la plaque motrice des fibres musculaires, dont il déclenche les contractions.
Les neurones sensitifs comprennent les faisceaux véhiculant les sensations tactile, thermique et douloureuse, à partir des récepteurs cutanés, par la moelle épinière et jusqu'au cortex sensitif, circonvolution pariétale située en arrière de la scissure de Rolando. Les sensations venant des autres organes des sens (audition, olfaction, goût, vue) gagnent, chacune par un nerf spécifique, un territoire particulier du cortex.

3.2. Système nerveux végétatif

Encore appelé système nerveux autonome, il est complémentaire du système nerveux somatique et régule notamment la respiration, la digestion, les excrétions, la circulation (battements cardiaques, pression artérielle). Ses cellules dépendent de centres régulateurs situés dans la moelle épinière, le tronc cérébral et le cerveau, lesquels reçoivent les informations par les voies sensorielles provenant de chaque organe.
Le système nerveux végétatif est divisé en système nerveux parasympathique et système nerveux sympathique, dont les activités s'équilibrent de façon à coordonner le fonctionnement de tous les viscères.
Le système nerveux parasympathique est en règle générale responsable de la mise au repos de l'organisme. Il agit par l'intermédiaire d'un neurotransmetteur, l'acétylcholine, et ralentit le rythme cardiaque, stimule le système digestif et limite les contractions des sphincters.
Le système nerveux sympathique, ou système nerveux orthosympathique, met l'organisme en état d'alerte et le prépare à l'activité. Il agit par l'intermédiaire de deux neurotransmetteurs, l'adrénaline et la noradrénaline. Il augmente l'activité cardiaque et respiratoire, dilate les bronches et les pupilles, contracte les artères, fait sécréter la sueur. En revanche, il freine la fonction digestive.

3.3. La coordination des mouvements
Prenons l'exemple d'un coup de pied dans un ballon à l'occasion d'une partie de football. Il faut d'abord ajuster la cible : le système visuel identifie le ballon, détermine sa position et la direction du mouvement, anticipe le lieu du futur impact avec le pied.
Toutes les informations proprioceptives issues des muscles et des articulations servent à déterminer la position du corps et des membres, et le mouvement à effectuer pour atteindre le ballon. Lors de l'acte moteur, le mouvement est programmé, tandis que la posture du corps est ajustée afin que le pied se porte rapidement en avant sans entraîner la chute du corps. Tout cela s'accomplit parce que le joueur est motivé pour frapper le ballon. Enfin, au cours de la partie, l'hypothalamus va sans cesse ajuster les niveaux d'insuline et de glucagon pour fournir aux muscles et au cerveau les sources énergétiques nécessaires.

3.4. La transmission de l'information

L'information circule de neurone en neurone en transitant par des relais, groupes de corps cellulaires neuronaux agrégés en noyaux. Mais les connexions ne se font pas de façon linéaire : à chaque synapse, et plus précisément à chaque noyau de relais, l'information est modifiée par la convergence vers la même synapse, ou vers le même noyau, de multiples afférences. Dans un noyau, on trouve typiquement au moins deux sortes de neurones : les neurones de sortie, qui reçoivent l'information convergeant vers le noyau et envoient leurs axones vers les centres supérieurs ; les interneurones, qui modulent l'information de sortie en fonction de boucles de rétrocontrôle positif ou inhibiteur et dirigent leurs prolongements vers leur propre noyau. Toute information atteignant le cortex cérébral a déjà été filtrée et intégrée à plusieurs niveaux, en particulier lors de la dernière étape dans le thalamus.

3.4.1. Circuits neuronaux simples et rapidité d'action
Le traitement de l’information peut se faire selon un circuit très simple et très court : on parle alors de réflexe. Ainsi, lorsque l'on frappe avec un marteau sous la rotule, il n'existe qu'une connexion entre le neurone qui apporte l'information vers la moelle épinière et celui qui commande la contraction de la cuisse. Il suffit de quatre connexions pour aller du stimulus « lumière » à la réaction « contraction de la pupille ».

Ces systèmes courts permettent des réactions rapides – il convient de ne pas laisser trop longtemps ses doigts sur une plaque brûlante ! – mais peu élaborées. La contraction de la cuisse se fait de façon automatique et brutale, même si un obstacle est présent devant le pied ; en revanche, l'exécution d'un morceau de piano suppose des connexions très complexes à cause du nombre de muscles qu'il convient à chaque instant de contracter et de décontracter, et de la nécessité d'enchaîner harmonieusement des commandes pour aboutir au rythme de la mélodie, voire à son interprétation artistique.

3.4.2. Circuits neuronaux en boucle

Le fonctionnement cérébral, lui, présente des systèmes de boucles à chaque étape. En effet, à chaque relais une partie des fibres et des connexions revient vers l'étape précédente pour l'informer et la rétrocontrôler (feed-back), et lors de la sortie finale les sens enregistrent l'action, la rectifient ou l'ajustent jusqu'au dernier instant : ces boucles nous permettent de marcher, et non de sauter d'un point à l'autre comme des pantins désarticulés, de garder notre équilibre lorsque nous marchons contre le vent, lors d'un match de tennis de retourner une balle à laquelle l'adversaire aurait donné un effet inattendu.

3.5. L'organisation des systèmes

Chaque système (moteur, sensitif…) est lui-même composé d'un grand nombre de sous-systèmes spécialisés. Par exemple, dans le cas de la perception visuelle, il existe des neurones activés par la position d'un objet, et d'autres sensibles au mouvement de ce dernier, et ce uniquement dans une direction donnée de l'espace.
Les systèmes sont organisés de façon topographique, c'est-à-dire que les voies nerveuses et les ensembles de neurones impliqués dans une même fonction se regroupent. Il est ainsi possible de dresser des cartes correspondant à des systèmes spécialisés.
Par exemple, la carte de perception visuelle relie chaque point du champ visuel à un point de la rétine, puis à son correspondant dans le relais visuel (les tubercules quadrijumeaux), jusqu'à son homologue au niveau du cortex visuel occipital.
Chez l'homme, le système nerveux est symétrique, et, sans que l'on sache encore pourquoi, les voies nerveuses sont en général croisées : le cortex cérébral moteur droit commande le côté gauche du corps, et le champ visuel gauche se projette sur le cortex occipital droit.

EMBRYOLOGIE
Développement du système nerveux

Lors du développement embryonnaire, la vésicule cérébrale primitive se divise en trois vésicules : le prosencéphale, le mésencéphale et le rhombencéphale. Celles-ci donnent à leur tour cinq vésicules : le télencéphale, le diencéphale, le mésencéphale, le métencéphale et le myélencéphale.
Le télencéphale donne naissance au cortex cérébral, aux hémisphères cérébraux, aux noyaux gris centraux et aux ventricules latéraux.
Le diencéphale donne le thalamus, le troisième ventricule et les noyaux sous-thalamiques.
Le mésencéphale donne les pédoncules cérébraux.
Le métencéphale donne la protubérance annulaire et le cervelet, tandis que le myélencéphale donne le bulbe rachidien.
Le quatrième ventricule se développe à partir de la vésicule rhombencéphalique.

ASPECTS MÉDICAUX
1. Examens du système nerveux

Les examens permettant d'explorer le système nerveux central sont principalement le scanner, l'imagerie par résonance magnétique (I.R.M.), l'enregistrement des potentiels évoqués (méthode d'étude de l'activité électrique des voies nerveuses de l'audition, de la vision et de la sensibilité corporelle), l'électroencéphalographie et l'analyse du liquide cérébrospinal recueilli par ponction lombaire. Le système nerveux périphérique est plus particulièrement exploré par l'électromyographie.

2. Pathologie du système nerveux
On distingue les lésions du système nerveux central et celles du système nerveux périphérique.
Les lésions du système nerveux central relèvent de différentes causes :

• la compression du cerveau ou de la moelle épinière par un hématome (dû à un traumatisme crânien), un abcès, une tumeur bénigne ou maligne, un œdème cérébral ;

• la destruction du cerveau ou de la moelle épinière par un traumatisme (section de la moelle par fracture vertébrale), une infection (méningite, encéphalite), une intoxication ou une insuffisance de vascularisation (artérite cérébrale) ;
• l'excitation anormale de certaines zones du cortex (épilepsie) ;

Les lésions du système nerveux périphérique sont soit des mononeuropathies (atteinte d'un seul nerf) dues à la section d'un nerf, à la compression d'une de ses racines (sciatique par hernie discale) ou à une infection (zona), soit des polyneuropathies (atteinte de plusieurs nerfs ; → polynévrite) d'origine virale, immunologique (polyradiculonévrite, par exemple), carentielle (déficit en vitamines) ou encore toxique (alcoolisme, par exemple). Outre les traumatismes, de nombreuses autres affections sont également responsables d'une atteinte des nerfs, comme le diabète sucré, la diphtérie, la lèpre ou le lupus érythémateux disséminé. Lorsque plusieurs nerfs sont successivement touchés, on parle de multinévrite.
Voir aussi l'article : neuropathie

ZOOLOGIE

Le système nerveux, inexistant chez les protistes et les spongiaires, apparaît chez les cnidaires. Chez les vers plats (plathelminthes), il est disposé en échelle (des cordons latéraux réunis par des commissures) et relié à un « ganglion cérébroïde » qui reçoit aussi les informations sensorielles.
Les arthropodes, mollusques et annélides (animaux protostomiens) sont dits hyponeuriens car ils n'ont conservé que l'échelle nerveuse ventrale, le cerveau seul étant dorsal et relié à l'échelle par un collier entourant l'œsophage. Une grande concentration nerveuse s'observe cependant chez les poulpes, les crabes et les araignées.
Vertébrés et échinodermes sont des épineuriens. Procordés et vertébrés ont une moelle épinière formée à partir de l'ectoderme dorsal : c'est un cordon impair et médian, creux (ventricules, canal de l'épendyme) et tous les centres nerveux proviennent du développement de ses parois. L'évolution de l'embranchement se traduit par une céphalisation croissante, la partie céphalique du tube neural devenant un cerveau de plus en plus développé, ou plus exactement un encéphale divisé en 5 segments, aux fonctions différentes et dont l'antérieur seul est le cerveau au sens strict. À ce système cérébro-spinal s'ajoutent des systèmes nerveux viscéraux plus autonomes, de moins en moins cependant au cours de l'évolution (système ortho- et parasympathique des vertébrés, systèmes analogues chez les vers et les arthropodes).

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

Résistance aux antibiotiques : une nouvelle cible dans la paroi bactérienne

 

 

 

 

 

 

 

Résistance aux antibiotiques : une nouvelle cible dans la paroi bactérienne
 
Les antibiotiques telle que la pénicilline, sont utilisés comme traitement anti-infectieux depuis presque un siècle. Cependant, les phénomènes de résistance développés par plusieurs pathogènes soulignent l’importance d’une recherche visant à identifier de nouvelles cibles potentielles. L’équipe d’Andréa Dessen à l’Institut de biologie structurale, en collaboration avec les équipes d’Ivo Gomperts-Boneca à l’Institut Pasteur et le Brazilian Biosciences National Laboratory, a caractérisé un complexe entre PBP2 et MreC, deux protéines essentielles pour l’élongation de la paroi bactérienne. Ces résultats, publiés le 3 octobre 2017 dans la revue Nature Communications, ouvrent la voie au développement de nouveaux antibiotiques ciblant la région d’interaction entre les deux protéines. 

Depuis leur introduction sur le marché international dans les années 40, les antibiotiques de type beta-lactamine, comme les pénicillines et céphalosporines, sont le traitement de choix pour des infections qui vont de la pneumonie jusqu’à la peste. Les beta-lactamines perturbent la machinerie de formation de la paroi cellulaire en bloquant l’activité des Penicillin-Binding Proteins (PBPs), protéines qui catalysent les dernières étapes de la synthèse d’un de ses composants essentiels. Ce composant, intitulé ‘peptidoglycane’, forme une structure qui ressemble à un « filet de pêcheur » qui entoure toute la bactérie. Ce « filet » est essentiel non seulement pour sa stabilité mais aussi pour le bon déroulement des différentes étapes du cycle cellulaire, comme la division et l’élongation de la paroi du microorganisme. Ceci explique pourquoi plusieurs PBPs sont indispensables pour la survie bactérienne.
 
Outre leur fonction enzymatique, les PBPs sont engagées dans des interactions essentielles avec d’autres protéines qui participent à la formation de la paroi. L’une d’entre elles, MreC, est  considérée comme une plateforme permettant la stabilisation d’autres protéines qui participent au même processus. Un complexe entre une PBP et MreC représenterait donc le « cœur » de l’elongasome, structure clé pour la survie bactérienne qui pourrait être ciblée pour le développement de nouveaux agents antibactériens. Cependant, ces complexes ont toujours été considérés comme instables et fragiles, et leur étude structurale, très difficile.
 
Les chercheurs ont caractérisé, pour la première fois, le complexe PBP2:MreC du pathogène humain Helicobacter pylori. Cette structure cristalline, obtenue a une résolution atomique grâce à la collecte de données au synchrotron ESRF à Grenoble, a révélé que pour que les deux protéines interagissent, l’une d’elle (PBP2) doit s’ouvrir, pour permettre la formation d’une structure qui ressemble à une fermeture éclair avec sa partenaire MreC. Cette structure doit rester fermée pour que les deux partenaires puissent rester associés. Toute atteinte à l’ouverture de cette structure, par exemple par l’introduction de mutations, empêche non seulement la reconnaissance entre PBP2 et MreC mais aussi la bonne formation de la paroi lors de l’élongation des cellules filles, générant ainsi des cellules de diamètre aberrant qui éventuellement meurent. La superficie d'interaction entre les deux protéines pourrait être une cible potentielle pour le développement d'inhibiteurs totalement novateurs.
 
 
En savoir plus
* Molecular architecture of the PBP2:MreC core bacterial cell wall synthesis complex. 
Contreras-Martel C, Martins A, Ecobichon C, Maragno Trindade D, Mattei PJ, El Ghachi M, Hicham S, Hardouin P, Boneca IG, Dessen A. 
Nature Communications 8, Article number: 776(2017doi:10.1038/s41467-017-00783-2
 

 Contact chercheur
* Andréa Dessen
Groupe Pathogénie Bactérienne
Institut de Biologie Structurale 
CNRS UMR 5075 - CEA - Université Grenoble Alpes
71 avenue des Martyrs
38000 Grenoble

04 57 42 85 90


 
Mise en ligne le 23 octobre 2017

 

 DOCUMENT       cnrs        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon