ecole de musique piano
     
menu
 
 
 
 
 
 

Les préférences auditives des nouveau-nés sont influencées par l’expérience émotionnelle associée aux sons perçus par leur mère au cours de la gestati

 


 

 

 

 

 

Les préférences auditives des nouveau-nés sont influencées par l’expérience émotionnelle associée aux sons perçus par leur mère au cours de la gestation


L’expérience sensorielle prénatale, en particulier les expériences auditives, sont une source de mémoires pour les fœtus. Ainsi, les nouveau-nés de différentes espèces, y compris l’Homme, distinguent la voix de leur mère de celle d’autres individus. Des chercheurs des laboratoires Physiologie, environnement et génétique pour l'animal et les systèmes d'élevage et Ethologie animale et humaine, apportent pour la première fois une preuve expérimentale chez des porcelets que la contiguïté temporelle entre des stimuli sensoriels et des réactions émotionnelles maternelles peut être une source d’apprentissage associatif pour le fœtus. Cette étude a été publiée le 18 novembre dans la revue Scientific Reports.

Les chercheurs ont testé si l’association de sons (voix humaine lisant un texte) avec une expérience émotionnelle de valence positive ou négative chez des truies gestantes avait un impact sur la réaction des porcelets à ces mêmes sons juste après la naissance et dans les semaines suivantes.

Trente truies et leurs portées ont été étudiées : les truies recevaient quotidiennement et alternativement un traitement positif et un traitement négatif pendant leur dernier mois de gestation, chacun étant associé avec une voix humaine particulière. Après la naissance des porcelets, ceux-ci ont été soumis à des tests de séparation auxquels étaient associés la diffusion d’une ou des deux voix. Les résultats montrent bien que cette expérience de la mère gestante a une influence sur les réactions postnatales des porcelets à ces sons : 1) dès le premier test à l’âge de deux jours (mais également encore à l'âge de trois semaines), les porcelets pour qui ces voix sont “familières” sont moins stressés par la séparation que les porcelets témoins qui n'ont pas été exposés à ces voix avant leur naissance : il y a donc bien eu audition et mémorisation in utero ; 2) cet effet est généralisé à toute voix humaine puisqu’ils sont aussi davantage “rassurés” en entendant une voix étrangère ; 3) et surtout, ils sont plus stressés en entendant la voix humaine associée par la mère à une émotion négative que lorsqu'ils sont isolés avec la voix humaine associée par la mère à une émotion positive ou en absence de voix. Cette étude apporte la première démonstration d’un apprentissage in utero d’une association entre un stimulus sensoriel et l’état émotionnel de la mère. Ces résultats ouvrent tout un pan de recherche qui va bien au-delà de l’espèce porcine car ils invitent à reconsidérer l’impact des expériences prénatales à travers le filtre des ressentis maternels.


 En savoir plus
* Postnatal auditory preferences in piglets differ according to maternal emotional experience with the same sounds during gestation. 
Tallet C, Rakotomahandry M, Guérin C, Lemasson A, Hausberger M.
Sci Rep. 2016 Nov 18;6:37238. doi: 10.1038/srep37238.
 

 Contact chercheur
* Céline Tallet 
Physiologie, Environnement et Génétique 
pour l'Animal et les Systèmes d'Élevage 
INRA UMR 1348- Université de Rennes 1
INRA St Gilles Domaine de la Prise
35590 SAINT GILLES Tel: 02 23 48 50 53 

* Martine Hausberger
Ethologie animale et Humaine (Ethos)
 CNRS UMR 6552 - Université de Rennes 1 
Campus de Beaulieu
263 Avenue du Général Leclerc 
35042 Rennes cedex 
Tel: 02 23 23 48 28

* Alban Lemasson
Ethologie animale et Humaine (Ethos)
 CNRS UMR 6552 - Université de Rennes 1 
Campus de Beaulieu
263 Avenue du Général Leclerc 
35042 Rennes cedex 
Tel: 02 23 23 68 20

 

 DOCUMENT       cnrs        LIEN  
 

 
 
 
 

Impact de l’apprentissage de la lecture sur le cerveau

 

     

 

 

 

 

 

Impact de l’apprentissage de la lecture sur le cerveau

COMMUNIQUÉ | 09 NOV. 2010 - 17H23 | PAR INSERM (SALLE DE PRESSE)



Pour la première fois, des images détaillées de l’impact de l’apprentissage de la lecture sur le cerveau ont été obtenues par une équipe internationale de chercheurs. En comparant l’activité cérébrale d’adultes analphabètes avec celle de personnes alphabétisées durant l’enfance ou à l’âge adulte ces chercheurs ont démontré l’emprise massive de la lecture sur les aires visuelles du cerveau ainsi que sur celles utilisées pour le langage parlé. Coordonnée par Stanislas Dehaene (Collège de France, Unité CEAInserm- Université Paris Sud 11 de Neuroimagerie Cognitive, NeuroSpin/I²BM) et Laurent Cohen (Inserm, AP-HP, Université Pierre et Marie Curie), cette étude a impliqué des équipes brésiliennes, portugaises, et belges. Ces résultats sont publiés en ligne le 11 novembre par la revue Science.



L’acquisition de la lecture soulève plusieurs questions scientifiques importantes quant à son influence sur le fonctionnement cérébral. L’écriture est une invention trop récente pour avoir influencé l’évolution génétique humaine. Son apprentissage ne peut donc reposer que sur un « recyclage » de régions cérébrales préexistantes, initialement dédiées à d’autres fonctions mais suffisamment plastiques pour se réorienter vers l’identification des signes écrits et leur mise en liaison avec le langage parlé (1). C’est dans ce cadre que les chercheurs essaient de mieux comprendre l’impact de l’apprentissage de la lecture sur le cerveau.
Pour cela, ils ont mesuré, par IRM fonctionnelle (2), l’activité cérébrale d’adultes volontaires diversement alphabétisés, dans l’ensemble du cortex, avec une résolution de quelques millimètres, tandis qu’ils leur présentaient toute une batterie de stimuli : phrases parlées et écrites, mots et pseudo-mots parlés, visages, maisons, objets, damiers…63 adultes ont participé à l’étude : 10 personnes analphabètes, 22 personnes non-scolarisées dans l’enfance mais alphabétisées à l’âge adulte, et 31 personnes scolarisées depuis l’enfance. La recherche a été menée en parallèle au Portugal et au Brésil, pays dans lesquels, voici quelques dizaines d’années, il était encore relativement fréquent que des enfants ne puissent pas aller à l’école uniquement en raison de leur environnement social (isolement relatif, milieu rural). Tous les volontaires étaient bien intégrés socialement, en bonne santé, et la plupart avaient un emploi. Les études ont été réalisées avec des imageurs IRM à 3 Tesla au centre NeuroSpin (CEA Saclay) pour les volontaires portugais et au centre de recherches en neurosciences de l’hôpital Sarah Lago Norte à Brasilia3 pour les volontaires brésiliens. Grâce à ces travaux les chercheurs apportent des éléments de réponse à plusieurs questions essentielles.
Comment les aires cérébrales impliquées dans la lecture se transforment-elles sous l’influence de l’éducation ?

En comparant directement l’évolution de l’activation cérébrale en fonction du score de lecture (nul chez les analphabètes et variable dans les autres groupes), les chercheurs ont montré que l’impact de l’alphabétisation est bien plus étendu que les études précédentes ne le laissaient penser.
*         Apprendre à lire augmente les réponses des aires visuelles du cortex, non seulement dans une région spécialisée pour la forme écrite des lettres (précédemment identifiée comme la « boîte aux lettres du cerveau »), mais aussi dans l’aire visuelle primaire.
*
*         La lecture augmente également les réponses au langage parlé dans le cortex auditif, dans une région impliquée dans le codage des phonèmes (les plus petits éléments significatifs du langage parlé, comme « b » ou « ch »). Ce résultat pourrait correspondre au fait que les analphabètes ne parviennent pas à réaliser des jeux de langage tels que la délétion du premier son d’un mot (Paris→aris).
*
*         La lecture induit également une extension des aires du langage et une communication bidirectionnelle entre les réseaux du langage parlé et écrit : chez un bon lecteur, voir une phrase écrite active l’ensemble des aires du langage parlé, entendre un mot parlé permet de réactiver rapidement son code orthographique dans les aires visuelles. Chez les personnes qui n’ont pas appris à lire, le traitement du langage est moins flexible et strictement limité à la modalité auditive.
*
*        
À quoi servent les aires cérébrales impliquées dans la lecture avant qu’une personne n’apprenne à lire ? L’apprentissage de la lecture implique-t-il toujours un gain de fonction, ou bien l’augmentation des réponses aux mots s’accompagne-t-elle de diminutions des réponses à d’autres catégories de connaissances ?

Chez les analphabètes l’aire visuelle de l’hémisphère gauche qui, chez les lecteurs, décode les mots écrits répond à une fonction proche : la reconnaissance visuelle des objets et des visages. Dans cette région, au cours de l’apprentissage, la réponse aux visages diminue légèrement à mesure que la compétence de lecture augmente, et l’activation aux visages se déplace partiellement dans l’hémisphère droit. Le cortex visuel se réorganise donc, en partie, par compétition entre l’activité nouvelle de lecture et les activités plus anciennes de reconnaissance des visages et des objets. Aujourd’hui, on ne sait pas si cette compétition entraîne des conséquences fonctionnelles pour la reconnaissance ou la mémoire des visages.

Les modifications cérébrales liées à l’alphabétisation peuvent-elles se produire à l’âge adulte ? Ou bien existe-t-il une « période critique » pour cet apprentissage dans la petite enfance ?

La très grande majorité des effets de l’apprentissage de la lecture sur le cortex sont visibles autant chez les personnes scolarisées dans l’enfance que chez celles qui ont suivi des cours d’alphabétisation à l’âge adulte. Bien entendu, ces dernières n’atteignent que rarement les mêmes performances de lecture, mais cette différence pourrait n’être due qu’à leur moindre entraînement. À performances de lecture égales, il n’existe pratiquement pas de différences mesurables entre les activations cérébrales des personnes qui ont appris à lire dans l’enfance ou à l’âge adulte. Les circuits de la lecture restent donc plastiques tout au long de la vie.

Ces résultats soulignent l’impact massif de l’éducation sur le cerveau humain. Ils nous rappellent également que l’immense majorité des expériences d’IRM cérébrale portent sur le cerveau éduqué et que l’organisation cérébrale en l’absence d’éducation constitue un immense territoire largement inexploré.
Un aperçu des vastes réseaux cérébraux dont l’activité augmente avec le score de lecture, en réponse à des phrases écrites. Dès qu’une personne sait lire, la réponse aux mots écrits augmente rapidement dans diverses aires visuelles, dont l’une est spécialisée dans l’analyse de la forme des lettres (graphe de droite). De plus, l’ensemble des régions de l’hémisphère gauche impliquées dans le traitement du langage parlé (médaillon) devient susceptible de s’activer également en réponse au langage écrit.

 

 DOCUMENT      inserm     LIEN 

 
 
 
 

Une enzyme cruciale enfin démasquée

 

 

 

 

 

 

 

Une enzyme cruciale enfin démasquée
| 20 NOV. 2017 - 15H19 | PAR INSERM (SALLE DE PRESSE)

BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | CANCER | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE



Après 40 ans de recherche, des chercheurs du CEA, du CNRS, de l’Université Grenoble Alpes, de l’Université de Montpellier et de l’Inserm ont enfin démasqué l’enzyme responsable de la détyrosination de la tubuline. Surprise : ce n’est pas une enzyme mais deux qui ont été découvertes capables de modifier ce composant essentiel du squelette de la cellule. Ces travaux ouvrent de nouvelles pistes pour mieux comprendre le rôle de la tubuline dont les altérations accompagnent cancers, maladies cardiaques et défauts neuronaux. Ces résultats sont publiés le 16 novembre 2017 dans la revue Science.

Une collaboration internationale impliquant des chercheurs du CEA, du CNRS, de l’Inserm, de l’Université Grenoble Alpes, de l’Université de Montpellier et de l’Université de Stanford[1] a identifié une enzyme, la Tubuline CarboxyPeptidase (TCP), qui est responsable d’une transformation biochimique des microtubules cellulaires, la détyrosination. La détyrosination est une réaction biologique consistant à supprimer l’acide aminé terminal tyrosine[2], de la tubuline α, un composant des microtubules. Alors qu’elle était recherchée depuis quatre décennies, les biologistes ont réussi à isoler cette protéine par purification et ont ensuite apporté les preuves de son activité cellulaire.

Les microtubules contribuent à des fonctions cellulaires essentielles
Les microtubules sont des fibres dynamiques présentes dans toutes les cellules. Formés par l’assemblage de deux protéines (tubuline α et tubuline β), les microtubules assurent de  nombreuses fonctions. Ils séparent les chromosomes destinés aux deux cellules filles lors de la division cellulaire, ils contribuent à la polarité des cellules, à la morphologie et à la migration cellulaire. Ils forment des sortes de rails sur lesquels sont transportés des constituants cellulaires tels que des protéines ou des brins d’ARN.
Ces fonctions cellulaires sont régulées grâce à l’existence de « signaux » présents à la surface des microtubules. Ces signaux sont des modifications biochimiques des acides aminés (appelées modifications post-traductionnelles car elles ont lieu après la synthèse de la protéine) qui sont réalisées par plusieurs enzymes qui, ici, modifient les tubulines.

L’enzyme TCP, identifiée après 40 ans de mystère
L’activité de l’une de ces enzymes a été mise en évidence pour la première fois en 1977 par des chercheurs argentins qui lui donnent le nom de TCP (Tubuline CarboxyPeptidase). Cette enzyme, qui n’avait jusqu’à ce jour jamais été identifiée (sa taille et sa séquence restaient inconnues), a comme fonction de supprimer le dernier acide aminé, une tyrosine, de l’extrémité de la tubuline α. C’est la réaction de détyrosination. Une enzyme réverse, la ligase TTL, est chargée de repositionner cette tyrosine à sa place. C’est la tyrosination. Ce cycle de détyrosination/tyrosination est vital pour la cellule et l’organisme. Une détyrosination massive (anormale) est observée dans plusieurs cancers sévères et maladies cardiaques.

Identifier et caractériser la TCP constituait donc un objectif majeur pour comprendre la fonction physiologique de la détyrosination de la tubuline α et pour évaluer les conséquences de son inhibition.
Pour isoler la TCP, les chercheurs ont suivi son activité, utilisé des techniques classiques de biochimie et fait appel à des chimistes de l’Université de Stanford qui ont développé une petite molécule inhibitrice de son activité. Cette molécule a été utilisée comme hameçon pour « pêcher » l’enzyme convoitée.

Les microtubules sont des fibres présentes dans toutes les cellules composées d’un empilement de tubulines α/β. La tubuline α porte une tyrosine (Y) à son extrémité qui est alternativement enlevée et replacée par deux enzymes, modifiant ainsi la surface des microtubules. La TCP (représentée par une scie composée de deux éléments, VASH/SVBP) est responsable de la détyrosination. La TTL (représentée par un tube de colle) replace la tyrosine sur la tubuline. Ce cycle est essentiel aux diverses fonctions des microtubules dans les cellules (division, migration, …) et vital pour l’organisme. © C. Bosc, GIN

Au final, ce ne sont pas une, mais deux enzymes qui ont été découvertes ! Ces dernières, dénommées VASH1 et VASH2, étaient déjà connues des scientifiques mais sans savoir qu’il s’agissait d’enzymes en lien avec le cytosquelette. Les chercheurs ont montré qu’à la condition d’être associées à une protéine partenaire appelée SVBP, VASH1 et VASH2 sont capables de détyrosiner la tubuline α. Pour le démontrer, les chercheurs ont supprimé leur expression (ou celle de leur partenaire SVBP) dans les neurones. Ils ont alors observé une très forte diminution du taux de détyrosination de la tubuline α, ainsi que des anomalies dans la morphologie des neurones (v. Figure). Les chercheurs sont allés plus loin en montrant que ces enzymes sont également impliquées dans le développement du cortex cérébral.

Des perspectives pour la lutte contre le cancer
Ainsi, quarante ans après les premiers travaux sur la détyrosination de la tubuline α, les enzymes responsables ont été démasquées ! Dorénavant, les scientifiques espèrent qu’en modulant l’efficacité de la TCP et en améliorant les connaissances du cycle détyrosination/tyrosination, ils pourront mieux lutter contre certains cancers et progresseront dans la connaissance des fonctions cérébrales et cardiaques.


[1] Les instituts suivants sont impliqués : Grenoble Institut des neurosciences, GIN (Inserm/Univ. Grenoble Alpes); l’Institut de biosciences et biotechnologies de Grenoble, BIG (Inserm/CEA/Univ. Grenoble Alpes) ; l’Institut pour l’avancée des biosciences, IAB (Inserm/CNRS/Univ. Grenoble Alpes), le Department of Pathology, Stanford University School of Medicine (Stanford, USA), l’Institut de génétique humaine, IGH (CNRS/Univ. de Montpellier), le Centre de recherche en biologie cellulaire de Montpellier, CRBM (CNRS/Univ. de Montpellier).
[2] La tyrosine est l’un des 22 acides aminés qui constituent les protéines

 

 DOCUMENT      inserm     LIEN 

 
 
 
 

Un test sanguin développé pour détecter une maladie rare neurologique

 

 

 

 

 

 

 

Un test sanguin développé pour détecter une maladie rare neurologique


COMMUNIQUÉ | 12 JUIN 2017 - 14H07 | PAR INSERM (SALLE DE PRESSE)
NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE



Des équipes de l’AP-HP en collaboration avec des chercheurs de l’ICM (Inserm/CNRS/UPMC), et la start-up Metafora Biosystems, issue du CNRS, viennent de développer un test de diagnostic sanguin d’une maladie neurologique rare mais traitable, la maladie de De Vivo.
Il a été testé sur 30 patients atteints de cette maladie qui induit des déficits neurologiques tels qu’une épilepsie ou des troubles de la marche par exemple.
Le nouveau test[1], dont les résultats sont publiés dans la revue Annals of Neurology, permettra d’identifier rapidement (en moins de 48h) et facilement les enfants et les adultes touchés comparativement aux tests diagnostiques actuels qui reposent sur un geste invasif, la ponction lombaire ou des analyses ADN complexes.
La maladie de De Vivo ou syndrome du déficit en transporteur cérébral de glucose de type 1 (GLUT-1) se caractérise le plus souvent par un retard du développement, une épilepsie et/ou des troubles moteurs chez l’enfant. Des formes frustres[2] ont été décrites chez les enfants (accès de mouvements anormaux) mais aussi les adultes. On estime, sur la base d’une prévalence estimée à 1/83 000 dans la population danoise, à 800 le nombre de patients en France[3], dont un peu plus d’une centaine serait diagnostiquée. Dès lors qu’ils sont diagnostiqués, les patients peuvent bénéficier de traitements métaboliques qui diminuent les symptômes.
Le Dr Fanny Mochel à l’hôpital Pitié-Salpêtrière AP-HP, en lien avec les équipes de plusieurs hôpitaux de l’AP-HP (Bichat, Raymond-Poincaré et Robert-Debré) et de l’Institut du cerveau et de la moelle épinière (Inserm/CNRS/UPMC), ont développé avec la start-up Metafora Biosystems, un test de diagnostic sanguin simple et rapide (moins de 48h) de la maladie de De Vivo. Le diagnostic actuel est contraignant puisqu’il repose sur un geste invasif, la ponction lombaire, et des analyses génétiques complexes.

Dans cette étude, les prélèvements sanguins de 30 patients atteints de la maladie avec des profils différents, en fonction de l’âge et des symptômes, ont été analysés. Comparés à 346 prélèvements d’individus témoins, les résultats montrent que le test est significativement concluant avec 78% de diagnostic, incluant des patients pour lesquels les analyses génétiques n’avaient pas permis d’établir le diagnostic.

Forts de ces résultats, les chercheurs recommandent l’utilisation de ce test en routine clinique dans tous les services de neuropédiatrie et de neurologie. Ils suggèrent que la simplicité de ce nouveau test devrait augmenter le nombre de patients identifiés en France.
Grâce à ce nouveau test sanguin innovant, la maladie va pouvoir être recherchée chez tout patient présentant une déficience intellectuelle et/ou une épilepsie et/ou un trouble de la marche. Les traitements que l’on peut mettre en œuvre améliorent considérablement les symptômes, avec par exemple la disparition des crises d’épilepsie, et sont d’autant efficaces qu’ils sont débutés tôt, d’où l’importance d’un diagnostic précoce.
[1]  Protégé par le brevet CNRS WO2004/096841.
[2] Quand les patients ne présentent pas tous les symptômes caractéristiques d’une maladie ou que ces symptômes sont légers.
[3] [1] Larsen J, et al. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia. 2015 Dec;56(12):e203-8.

 

DOCUMENT      inserm     LIEN 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon