|
|
|
|
 |
|
PARKINSON 2 |
|
|
|
|
|
Paris, 10 octobre 2013
Deux formes différentes de Parkinson caractérisées
Pourquoi la maladie de Parkinson se manifeste-t-elle par des symptômes aussi différents d'un patient à l'autre ? Un consortium de chercheurs, menés par une équipe du Laboratoire CNRS d'enzymologie et biochimie structurales1 tient une piste solide. La maladie de Parkinson est causée par une protéine nommée alpha-synucléine dont les agrégats formés à l'intérieur des neurones finissent par tuer les neurones. Les chercheurs sont parvenus à caractériser et produire deux types d'agrégats d'alpha-synucléine différents entre eux. Mieux, ils ont montré que l'une de ces deux formes est beaucoup plus toxique et a une plus grande capacité à envahir les neurones. Cette découverte rend compte, à l'échelle moléculaire, de l'existence de profils d'accumulation d'alpha-synucléine différents d'un patient à l'autre. Publiés le 10 octobre dans Nature Communications, ces résultats sont une avancée notable dans la compréhension de la maladie de Parkinson. Ils permettent d'envisager de développer des thérapies adaptées pour chaque forme de cette maladie.
La maladie de Parkinson est la seconde maladie neurodégénérative la plus fréquente, après Alzheimer. Elle touche en France environ 150 000 personnes. Selon les patients, elle se manifeste par des tremblements incontrôlables (chez 60% des patients), ou par des symptômes plus diffus, comme la dépression, des troubles du comportement et différentes perturbations motrices. Ces différences dans les symptômes permettaient déjà de parler de plusieurs maladies de Parkinson.
Cette maladie, pour laquelle il n'existe pas de traitement curatif à ce jour, est causée par l'agrégation sous forme de dépôts fibrillaires d'une protéine naturellement abondante à la jonction des neurones, l'alpha-synucléine. Ces agrégats d'alpha-synucléine mal repliée se propagent d'un neurone à l'autre. Lorsqu'ils envahissent un nouveau neurone, ils sont capables de recruter l'alpha-synucléine normale pour l'ajouter au dépôt. C'est pourquoi, pour beaucoup de chercheurs, l'alpha-synucléine des agrégats doit être considérée comme une protéine infectieuse c'est-à-dire un prion. Très toxiques, les dépôts d'alpha-synucléine finissent par déclencher un processus d'apoptose, le suicide cellulaire.
Les chercheurs viennent de montrer qu'il n'existe pas qu'un seul type d'agrégat. Ils sont parvenus à produire deux types d'agrégats qui ne différent que par la façon dont s'empile la protéine. La première forme d'agrégat ressemble, à l'échelle du millionième du millimètre, à un spaghetti tandis que la deuxième est longue et aplatie, rappelant la forme d'une pâte plus large comme la linguine. Les scientifiques se sont ensuite demandé si ces différences de structure se traduisaient par des différences fonctionnelles. Pour cela, ils ont mis en contact ces deux types d'agrégat avec des cellules neuronales en culture. Résultat : la capacité de la forme « spaghetti » à se lier aux cellules et à les pénétrer était notablement supérieure à celle de la forme « linguine ». La forme « spaghetti » est aussi nettement plus toxique et tue rapidement les cellules infectées. Cette forme s'est révélée capable de résister aux mécanismes de la cellule chargés de l'éliminer, tandis que la forme « linguine » est, jusqu'à un certain degré, maîtrisée par la cellule.
Les chercheurs sont convaincus que l'existence d'au moins deux formes d'agrégats d'alpha-synucléine explique pourquoi les médecins sont confrontés à des maladies de Parkinson distinctes d'un patient à l'autre. Des travaux sur des souris sont en cours pour vérifier cette hypothèse. Par ailleurs, les scientifiques estiment que l'analyse du type d'agrégat pourrait devenir une méthode efficace de diagnostic, permettant notamment d'évaluer la virulence de la maladie pour chaque patient. Enfin, ils espèrent qu'en affinant la caractérisation de la structure des agrégats, on pourra mettre au point des stratégies thérapeutiques ciblées pour chaque variant afin de ralentir la propagation de l'alpha-synucléine anormale dans le cerveau.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
MALADIE AUTO-IMMUNE |
|
|
|
|
|
Paris, 19 décembre 2012
Maladie auto-immune : la piste virale confirmée
Pourquoi le système immunitaire peut-il se retourner contre nos propres cellules ? C'est à cette question que tente de répondre les chercheurs de l'unité mixte Inserm/CNRS/Université Pierre et Marie Curie/Association Institut de myologie « Thérapies des maladies du muscle strié », en se penchant plus particulièrement sur une maladie auto-immune, la myasthénie grave. Dans le cadre du projet FIGHT-MG (Combattre la Myasthénie Grave), financé par la Commission Européenne et coordonné par l'Inserm, Sonia Berrih-Aknin et Rozen Le Panse ont apporté la preuve du concept qu'une molécule mimant un virus peut déclencher une réponse immunitaire inappropriée dégradant les fonctions musculaires. Ces résultats sont publiés dans la revue Annals of Neurology, accessible en ligne.
La myasthénie, une maladie auto-immune rare
La myasthénie grave est une maladie auto-immune rare (5 à 6 000 patients en France) entrainant une faiblesse musculaire et une fatigabilité excessive. Elle touche généralement d'abord les muscles du visage, puis elle peut se généraliser aux muscles des membres ou encore aux muscles respiratoires entrainant une détresse respiratoire.
Elle est due à la production d'auto-anticorps circulants qui bloquent les récepteurs de l'acétylcholine (RACh), un neurotransmetteur nécessaire à la transmission du signal nerveux moteur, au niveau de la jonction neuromusculaire.
Est-ce qu'une infection virale peut-être à l'origine de la myasthénie ?
La myasthénie est une maladie multifactorielle où des facteurs environnementaux semblent jouer un rôle clé dans son déclenchement. Les infections virales sont suspectées mais prouver le rôle d'un virus dans le déclenchement est difficile. En effet, le diagnostic de myasthénie est souvent fait des mois, voire des années après le réel début de la maladie quand le virus n'est plus détectable, alors qu'une signature laissée par le virus peut se voir longtemps après l'infection.
La preuve de concept de l'origine virale apportée par les chercheurs
Dans le cadre du projet européen FIGHT-MG, l'équipe de chercheurs est parvenue à décrypter le déclenchement de la maladie en utilisant une molécule mimant l'ARN double brin viral (le Poly(I:C)).
Pour cela, ils se sont penchés sur l'organe jouant un rôle central dans cette pathologie : le thymus. Cet organe, situé au niveau du thorax, sert de lieu de maturation aux lymphocytes T, acteurs centraux des réponses immunitaires et normalement éduqués pour éviter le développement d'une auto-immunité.
Ils ont ainsi mis en évidence in vitro que le Poly(I:C) était capable d'induire spécifiquement une surexpression de RACh par les cellules épithéliales thymiques, tout en activant trois protéines (le récepteur « toll-like » 3 (TLR3), la protéine kinase R (PKR) et l'interféron-beta (IFN-â)) ; cette dernière entrainant une inflammation au niveau du thymus.
En parallèle, ils ont analysé les thymus pathologiques des malades atteints de myasthénie, chez lesquels ils ont observé une surexpression de ces 3 mêmes protéines du système immunitaire, surexpression caractéristique d'une infection virale.
Enfin, les chercheurs sont parvenus également à identifier les mêmes changements moléculaires dans le thymus de souris, suite à l'injection de Poly(I:C). Après une période d'injection prolongée, ils ont aussi observé chez ces souris la prolifération de cellules B anti-RACh, la présence d'auto-anticorps bloquant les récepteurs RACh et des signes cliniques synonymes de faiblesse musculaire comme dans la myasthénie. Ces résultats originaux montrent que des molécules mimant une infection virale sont capables d'induire une myasthénie chez la souris, ce qui jusqu'à présent n'avait jamais été démontré.
L'ensemble des travaux publiés dans la revue Annals of Neurology apporte une preuve de concept qu'une infection virale pourrait entrainer une inflammation du thymus et conduire au développement d'une myasthénie auto-immune.
Les prochaines étapes de recherche consisteront à déterminer de quel virus exogène il pourrait s'agir ou s'il s'agit d'une activation anormale d'une réponse anti-virale par des molécules endogènes.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
LIGNEE HUMAINE |
|
|
|
|
|
Paris, 27 janvier 2011
Lignée humaine : le métissage entre Homo sapiens et espèces plus archaïques n'est pas la seule explication aux données génétiques
Y a-t-il eu métissage entre Homo Sapiens et les populations d'Homo archaïques qu'il a remplacées en Europe (l'homme de Néanderthal) et en Asie (Homo Erectus, l'homme de Denisova) ? Pas forcément, répondent deux bio-informaticiens, l'un du CNRS (1) et l'autre de l'Université d'Uppsala (Suède). Leurs simulations numériques montrent que d'autres événements démographiques pourraient rendre compte de la diversité génétique de notre espèce. Ce travail est publié dans la revue Molecular Biology and Evolution du mois de février 2011.
Depuis que l'on sait séquencer l'ADN, généticiens et bio-informaticiens s'intéressent de plus en plus aux origines de l'homme. Ils ont montré que l'« Eve mitochondriale » (la femme qui portait le dernier ancêtre commun des mitochondries (2) présentes dans la population actuelle) vivait il y a moins de 200 000 ans, de même que l'« Adam Y » (l'homme qui portait le dernier ancêtre commun des chromosomes Y actuels). Ensuite, ils ont voulu déterminer les âges des derniers ancêtres communs sur le chromosome X et les chromosomes non sexuels, mais jusqu'à présent, aucun consensus n'avait été atteint sur ce sujet. Certains parlaient d'1 à 1,5 million d'années tandis que d'autres pensaient qu'ils étaient contemporains de l'Eve mitochondriale et de l'Adam Y. L'idée prévalant était que, si les âges anciens des derniers ancêtres communs sur le chromosome X et les chromosomes non sexuels était confirmé, cela impliquait un métissage d'Homo Sapiens avec des hommes plus archaïques (repoussant le dernier ancêtre commun à l'époque où les populations archaïques se sont séparées).
Deux chercheurs, l'un au laboratoire « Techniques de l'ingénierie médicale et de la complexité - Informatique, Mathématiques et applications » de Grenoble (3) et l'autre à l'Université d'Uppsala, ont analysé une base publique de données d'ADN, pour calculer les âges des ancêtres communs sur le chromosome X et sur les chromosomes non sexuels. Ils ont trouvé respectivement 1 million et 1,5 million d'années, confirmant l'ancienneté de ces ancêtres.
Dès lors, ils ont voulu savoir si cela impliquait un métissage. Ils ont réalisé des simulations numériques du devenir du patrimoine génétique des populations humaines selon les deux scénarios classiques habituellement envisagés : dans le premier, après être apparu en Afrique, Homo Sapiens aurait ensuite remplacé les espèces archaïques qui vivaient sur les autres continents. Dans le second, il se serait métissé avec ces populations (en Europe avec l'homme de Neandertal, en Asie avec Homo Erectus, l'homme de Denisova…). Ces simulations aboutissent à un écart entre l'âge de l'Eve mitochondriale et celui de l'ancêtre commun des chromosomes non sexuels qui présente un rapport de 1 à 4. Or le rapport est en fait de 1 à 8. Ni l'un, ni l'autre des deux scénarios ne peut donc rendre compte, à eux seuls, des données de la génétique.
En revanche, deux hypothèses pourraient expliquer cet écart. Première hypothèse : avant la migration hors d'Afrique et depuis des centaines de milliers d'années, la population africaine a été morcelée en plusieurs groupes séparés par des barrières géographiques empêchant le brassage des gènes. Les ancêtres commun du chromosome X et les chromosomes non-sexuels dateraient alors d'avant l'isolement des différents groupes. Deuxième hypothèse : un « goulot d'étranglement démographique » a eu lieu il y a environ 150 000 ans, pendant l'avant-dernière glaciation. La rigueur du climat aurait alors provoqué une diminution de la taille de la population africaine. Les gènes présents sur les chromosomes non sexuels auraient franchi ce goulot d'étranglement, c'est-à-dire qu'ils auraient persisté dans la population après le goulot, contrairement aux gènes de l'ADN mitochondrial, qui eux, ne l'auraient pas passé (4).
En conclusion, ce travail montre que l'âge ancien des derniers ancêtres des chromosomes X et non-sexuels n'implique pas forcément un métissage de notre lignée, comme on le pensait jusqu'à présent. En effet, le scénario sans métissage peut également rendre compte, par le biais de l'une ou l'autre des hypothèses des chercheurs (fragmentation ancestrale ou goulot d'étranglement pendant l'avant-dernière glaciation) des résultats obtenus sur les âges des derniers ancêtres communs. A l'avenir, le séquençage de génomes entiers, en particulier celui de fossiles humains, permettra de tester ces hypothèses. Plus généralement, l'arrivée massive de génomes entiers va nous offrir une occasion sans précédent de mieux appréhender la paléogéographie humaine, et de mieux comprendre comment s'est façonnée la diversité génétique de notre espèce.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
GENETIQUE |
|
|
|
|
|
Paris, 25 septembre 2012
La diversité génétique : face cachée et ignorée de la biodiversité
A l'avenir, les politiques de conservation devront-elles tenir compte de la diversité génétique au sein de chaque espèce ? Au terme d'une vaste étude sur les plantes vivant en altitude, conduite dans l'ensemble du massif alpin et du massif des Carpates (1), une équipe internationale de 15 laboratoires, coordonnée par le Laboratoire d'écologie alpine (CNRS/Université Joseph Fourier Grenoble/Université de Savoie), montre que les milieux où la richesse génétique des espèces est la plus grande ne sont pas forcément ceux comptant le plus d'espèces. Ces résultats, publiés le 25 septembre 2012 dans Ecology Letters, ouvrent des perspectives en matière de stratégies de protection de la biodiversité.
Depuis la Conférence de Rio en 1992, il est admis que la biodiversité comprend trois niveaux emboîtés : la diversité des écosystèmes, la diversité des espèces composant l'écosystème, et la diversité génétique à l'intérieur de chaque espèce. Une grande diversité génétique est un atout pour une espèce car elle lui permet de s'adapter plus facilement, par le biais de l'évolution, aux modifications de son environnement, parmi lesquels ceux induits par le changement climatique. Lors de la conception de parcs ou de réserves naturelles, seuls les niveaux "écosystème" et "espèce" sont pris en compte. La diversité génétique est ignorée car d'une part elle est difficile à évaluer et, d'autre part, elle était supposée varier comme la richesse en espèces. Autrement dit, l'idée dominante était que plus il y avait d'espèces dans un milieu, plus la diversité génétique à l'intérieur de chaque espèce était grande.
Dans le cadre du projet européen IntraBioDiv, un consortium international composé de 15 laboratoires et coordonné par le Laboratoire d'écologie alpine a testé pour les plantes d'altitude (celles vivant au-dessus de 1500 mètres), l'hypothèse de co-variation entre la richesse en espèces et la diversité génétique. Ces deux niveaux de biodiversité ont été comparés en traçant des cartes de leur répartition sur l'ensemble du massif alpin et du massif des Carpates. Pour les réaliser, les chercheurs ont divisé ces régions montagneuses en secteurs d'environ 25 km de côté. Puis, ils ont compté, lors de campagnes menées sur le terrain, le nombre d'espèces de plantes d'altitude qui étaient représentées dans chacune de ces 561 zones d'études. Avant de procéder, en laboratoire, à l'analyse génétique de plus de 14 000 spécimens récoltés sur le terrain.
Le résultat marquant est que la richesse en espèces et la diversité génétique varient indépendamment l'un de l'autre, aussi bien dans les Alpes que dans les Carpates. Ainsi dans les Alpes, c'est la région située au Sud-Ouest, au niveau de la frontière entre la France et l'Italie qui est la plus riche en espèces, alors que la plus grande diversité génétique se situe soit dans les Alpes Centrales en Suisse, soit au Nord-Est, en Autriche.
La diversité génétique est pour l'instant ignorée dans la conception de zones protégées, malgré son importance pour le futur des espèces. Il serait souhaitable qu'elle soit prise en compte dans l'établissement des stratégies de conservation, au même titre que la diversité des écosystèmes et des espèces. La révolution technologique que nous connaissons actuellement pour le séquençage de l'ADN devrait permettre des évaluations à grande échelle de cette biodiversité à l'intérieur des espèces, et devrait conduire à une meilleure application de la Convention sur la Diversité Biologique, adoptée lors du sommet de la Terre à Rio en 1992.
DOCUMENT CNRS LIEN
college-genetique.igh.cnrs.fr PDF
uvp5.univ-paris5.fr PDF
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante |
|
|
|
|
|
|