ecole de musique piano
     
menu
 
 
 
 
 
 

LA GRAVITATION

 

LA GRAVITATION : HISTOIRE ET PROBLÈMES ACTUELS


Conférence donnée le 4 novembre 2003 par Luc Blanchet, physicien théoricien au GReCO-IAP. La relativité générale, créée en 1915 par Einstein, est issue d'une combinaison remarquable du principe de relativité, qui stipule l'invariance des lois de la physique dans les changements de repères inertiels (les lois sont les mêmes dans le train à grande vitesse et sur le talus immobile le long des rails), et le principe d'équivalence exprimant la fameuse égalité de la chute des corps (une plume tombe à la même accélération qu'une bille de plomb dans le champ de gravitation). Le pulsar binaire PSR 1913+16, un pulsar en orbite autour d'une autre étoile à neutrons, a montré l'existence d'une prédiction de cette théorie : les ondes gravitationnelles, que forme le champ de gravitation en se déplacant à la vitesse de la lumière. Les expériences VIRGO et LIGO vont permettre d'observer directement ces ondes, émises par des systèmes d'étoiles à neutrons ou de trous noirs doubles, au moment de leur fusion finale pour former un trou noir. La dynamique de ces systèmes se déduira de la comparaison avec la théorie dans ce qu'elle a de plus "pur" : le problème du mouvement gravitationnel de deux corps.

 

VIDEO               CANAL  U            LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

L'EAU : UN LIQUIDE EXTRAORDINAIRE

 

L'EAU : UN LIQUIDE ORDINAIRE OU EXTRAORDINAIRE


L'eau est un liquide dont les propriétés sont tout à fait surprenantes, à la fois comme liquide pur et comme solvant. C'est un liquide très cohésif : ses températures de cristallisation et d'ébullition sont très élevées pour un liquide qui n'est ni ionique, ni métallique, et dont la masse molaire est faible. Cette cohésion est assurée par les liaisons hydrogène entre molécules d'eau ; l'eau fait ainsi partie d'un petit groupe de liquides qu'on appelle liquides associés. Cependant, parmi ces liquides, la cohésion de l'eau est remarquable, et elle se traduit par une chaleur spécifique énorme. Cette résistance aux variations de température a des conséquences climatiques importantes, puisque la capacité calorifique des océans leur fait jouer le rôle de régulateurs thermiques du climat. L'eau est aussi un liquide très cohésif d'un point de vue diélectrique : sa constante diélectrique est bien plus élevée que celle qu'on attendrait sur la base de la valeur du moment dipolaire de la molécule isolée. C'est aussi, dans les conditions usuelles de température et de pression, un liquide peu dense : les atomes y occupent moins de la moitié du volume total ; une grande partie du volume de l'eau liquide est donc formée de cavités. Le volume occupé par ces cavités varie de manière tout à fait anormale à basse température. D'abord, l'eau se dilate quand on la refroidit en dessous d'une température appelée température du maximum de densité. Ensuite, l'eau se dilate encore de 9 % en cristallisant, contrairement à la plupart des liquides, qui se contractent d'environ 10 % en cristallisant. Cette augmentation de volume, qui fait flotter la glace sur l'eau, a des conséquences environnementales considérables : si la glace était plus dense que l'eau liquide, toute la glace formée dans les régions arctiques coulerait au fond des océans au lieu de former une banquise qui les isole thermiquement des températures extérieures, et la production de glace continuerait jusqu'à congélation complète de ces océans Pour presque tous les liquides, l'application d'une pression réduit la fluidité et favorise le solide par rapport au liquide. Au contraire, pour l'eau à basse température, l'application d'une pression accroît la fluidité et favorise le liquide par rapport à la glace. Cet effet anormal de la pression permet à l'eau de rester fluide lorqu'elle est confinée dans des pores ou des films nanométriques, contrairement aux autres liquides qui se solidifient sous l'effet des pressions de confinement. Cette persistance de l'état fluide est capitale pour le fonctionnement des cellules biologiques : en effet, de nombreux processus requièrent le déplacement de couches d'hydratation avant le contact entre macromolécules, ou avant le passage d'un ligand vers son récepteur. De même le passage des ions à travers les canaux qui traversent les membranes des cellules n'est possible que grâce à l'état fluide de l'eau confinée dans ces canaux. Les théories anciennes attribuaient toutes ces anomalies au fait que les molécules d'eau sont liées par des liaisons H. En ce sens, l'eau devrait avoir des propriétés « en ligne » avec celles d'autres liquides associés (éthanol, glycols, amides). Pour les propriétés de cohésion, c'est une bonne hypothèse de départ – bien que les propriétés de l'eau (densité d'énergie cohésive, constante diélectrique) soient supérieures à celles des liquides comparables. Pour les autres propriétés, cette hypothèse n'est pas suffisante : les autres liquides associés ne partagent pas les propriétés volumiques anormales de l'eau, ni son polymorphisme, ni son comportement comme solvant. Certains liquides ont un comportement qui ressemble à celui de l'eau pour une de ses propriétés : par exemple, on connaît quelques liquides qui se dilatent à basse température, ou en cristallisant. Nous découvrirons peut-être un jour que chacune des propriétés anormales de l'eau existe aussi dans un autre liquide. Cependant il est remarquable qu'un seul liquide rassemble autant d'anomalies. Il y a donc un besoin d'explication, auquel ne répondent pas les théories développées pour les liquides simples.

 

VIDEO               CANAL  U               LIEN

 


( si la vidéo n'est pas accessible, tapez le titre dans le moteur de recherche de CANAL U )

 
 
 
 

RECHAUFFEMENT CLIMATIQUE ... IL Y A 14 600 ANS

 

Paris, 28 mars 2012


Il y a 14 600 ans, la mer est montée très rapidement lors d'une période de réchauffement
Il y a 14 600 ans, le niveau marin a connu une hausse brutale de presque 14 mètres en seulement 350 ans. Cette élévation impressionnante coïncide avec le début de la première période chaude qui marqua la fin de la dernière glaciation. De plus, la contribution de la calotte antarctique à cette élévation a été significative. Tels sont les résultats mis en évidence par une équipe du CEREGE 1 (Aix-Marseille Université/CNRS/IRD/Collège de France), en collaboration avec des collègues anglais et japonais. Publiés le 29 mars 2012 dans la revue Nature, ces travaux confirment l'existence d'une accélération majeure de la remontée du niveau marin entre -14 650 et -14 300 : il s'agit d'un des événements climatiques les plus marquants des derniers 20 000 ans.
Les coraux édificateurs de récifs sont des organismes qui vivent exclusivement dans les eaux tropicales. Très sensibles à la luminosité et la température, ils croissent à fleur d'eau, dans un intervalle de profondeur très restreint, ce qui en fait de bons marqueurs du niveau de la mer. L'étude de ces coraux fossiles, qui se sont formés au cours des dernières centaines de milliers d'années, permet donc de reconstituer les variations du niveau marin et les changements environnementaux passés. Ces archives fournissent ainsi des informations précieuses sur la dynamique et le comportement des calottes de glace du passé. Mieux appréhender cette dynamique permettra d'améliorer à terme la modélisation et la prévision des variations futures du niveau marin.

Dans le cadre d'une campagne de forages internationale effectuée en 20052 sur les pentes des récifs actuels de Tahiti, les chercheurs du Centre européen de recherche et d'enseignement en géosciences de l'environnement (Aix-Marseille Université/CNRS/IRD/Collège de France) ont carotté trois sites situés dans des récifs coralliens, au large de l'île de Tahiti. En datant ces archives, ils ont pu reconstituer les variations du niveau marin sur les derniers 16 000 ans3. Ces datations mettent en évidence une remontée extrêmement rapide du niveau de la mer au cours de la dernière déglaciation qui s'est déroulée entre -21 000 et -11 000 environ. Au cours de cette transition entre une dernière période glaciaire et le climat chaud que connaît actuellement la Terre, le niveau marin global est remonté d'environ 120-130 mètres sur presque 15 000 ans. Il était déjà acquis que cette augmentation n'avait pas été constante, mais qu'elle avait été ponctuée par des élévations rapides du niveau marin associées à des débâcles massives des calottes de glace. La plus importante de ces hausses, appelée Melt-Water Pulse 1A (MWP-1A), restait cependant par bien des aspects énigmatique.

Ces nouveaux travaux ont permis de confirmer l'existence de cet événement climatique majeur, tout en révélant pour la première fois son amplitude, sa chronologie et sa durée. Le début du MWP-1A a été daté à 14 650 ans, ce qui fait coïncider cet évènement avec le début de la première phase chaude qui marqua  la fin de la glaciation dans l'hémisphère Nord. Cette période, appelée Bølling4, s'est étalée sur un peu moins de deux mille ans et a vu la température de l'hémisphère Nord augmenter de près de 5°C en quelques années. Selon les chercheurs du CEREGE, la remontée du niveau global des océans au cours du MWP-1A aurait été de presque 14 mètres en seulement 350 ans. La vitesse de la remontée du niveau marin aurait été au minimum de 40 mm/an, vitesse qu'il faut comparer au taux moyen de 10 mm/an estimé pour la dernière déglaciation ou à celui de 3 mm/an observé aujourd'hui par satellite. En s'appuyant sur des simulations de modèles géophysiques, les chercheurs ont aussi établi que la calotte antarctique avait contribué très significativement, probablement pour moitié, au MWP-1A. Ces travaux illustrent l'instabilité des calottes glaciaires, en particulier de la calotte antarctique, à une perturbation climatique majeure et imposent un regard nouveau sur la contribution future de la calotte antarctique à la remontée du niveau des mers dans le contexte actuel de réchauffement climatique.

DOCUMENT             CNRS               LIEN

 
 
 
 

HESS-II, LE PLUS GRAND TELESCOPE

 

Paris, 31 juillet 2012


Première lumière de HESS-II, le plus grand télescope gamma au monde
Le télescope HESS-II (1), situé en Namibie, a été mis en service le 26 juillet 2012 à 0h43 (heure de Paris). Équipé d'un miroir de 28 mètres de diamètre, HESS-II est le plus grand télescope gamma jamais construit à ce jour. Avec ce nouveau géant, l'observatoire international H.E.S.S., auquel contribuent le CNRS et le CEA, permettra de découvrir de nombreuses nouvelles sources cosmiques de haute énergie et de caractériser les phénomènes les plus violents de l'Univers.
Dans l'Univers, les trous noirs supermassifs, les amas de galaxies, les supernovæ, les étoiles doubles et les pulsars jouent le rôle d'accélérateurs naturels de particules cosmiques (électrons, ions…). Ces particules y acquièrent une très grande énergie, produisant des rayons gamma (2). Lorsque ces rayons atteignent l'atmosphère terrestre, ils se détruisent en une gerbe de particules secondaires, qui émettent un flash très ténu de lumière bleutée, la lumière Cherenkov. C'est cette lumière que les télescopes gamma, comme HESS-II, peuvent détecter.

HESS-II s'ajoute aux instruments de l'observatoire H.E.S.S., jusque-là composé de quatre télescopes de 12 mètres de diamètre, en fonctionnement depuis 2004 et dédiés à l'étude de l'Univers violent.

Le fonctionnement de HESS-II

La caméra électronique du nouveau télescope pourra détecter la lumière Cherenkov avec un « temps d'exposition » de quelques milliardièmes de secondes, une rapidité quasiment un million de fois supérieure à celle d'une caméra normale. D'une masse de trois tonnes, cette caméra est suspendue à 36 mètres au-dessus du miroir principal du télescope : pointée à la verticale, cette installation atteint alors la hauteur d'un immeuble de vingt étages. En dépit de sa taille et de ses 600 tonnes, HESS-II pourra pivoter deux fois plus rapidement que les autres télescopes de H.E.S.S., afin de répondre immédiatement aux alertes de sursauts gamma, ces signaux d'explosions qui arrivent soudainement de n'importe où dans le ciel.

La caméra et son système électronique intégré représentent l'essentiel de la contribution française dont le maître d'œuvre est l'IN2P3 du CNRS (3). Le CEA s'est investi dans le développement d'une puce dédiée, composante clé de l'électronique. Pour la réalisation de cette électronique, les laboratoires français se sont appuyés sur l'expertise acquise lors de la construction des caméras des quatre premiers télescopes, ainsi que sur un réseau de partenaires industriels.

Plus d'une centaine de sources cosmiques de rayons gamma de très haute énergie ont été recensées à ce jour, dont une majorité grâce à l'observatoire H.E.S.S. Le télescope HESS-II permettra d'étudier de façon plus détaillée les processus à l'œuvre dans ces objets du cosmos (trous noirs supermassifs, supernovae…), et de découvrir de nouvelles sources - voire des sources de nature encore inconnue - en détectant les rayons gamma dans une gamme d'énergie plus basse, jusque-là inexplorée.

HESS-II ouvre également la voie à la réalisation du CTA (Cherenkov Telescope Array), réseau de télescopes Cherenkov, défini comme une très haute priorité par les physiciens des astroparticules et les agences de financement en Europe. Le CTA permettra, grâce à la mise en réseau de plusieurs télescopes, d'élargir les gammes d'énergie détectables et d'affiner la résolution des résultats.

La collaboration internationale H.E.S.S.

Leader en Europe et dans le monde, la collaboration H.E.S.S. réunit actuellement 180 chercheurs issus de 28 laboratoires de 12 pays différents, principalement en Allemagne et en France. La collaboration a obtenu une riche moisson de résultats scientifiques largement reconnus au niveau international. Ces résultats ont également été possibles grâce aux moyens informatiques du Centre de calcul de l'IN2P3 du CNRS. La collaboration H.E.S.S. a notamment été récompensée en 2006 par le prix Descartes Recherche et en 2010 par le prix Bruno Rossi, décernés respectivement par la Commission européenne et par la Société américaine d'astronomie.

DOCUMENT             CNRS               LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon