ecole de musique piano
     
menu
 
 
 
 
 
 

HOMMES ET HOMINIDÉS

 

Texte de la 439e conférence de l'Université de tous les savoirs donnée le 18 juillet 2002
Grands singes - Hommes : histoire d'une divergence
Par Brigitte Senut,

La divergence entre les grands singes et l'homme est un des sujets les plus discutés de la paléontologie humaine, probablement car il touche directement à nos origines. Les données permettant d'appréhender cette séparation sont fournies par toute une série de disciplines allant de la paléontologie, la géologie, la sédimentologie à la biologie moléculaire. Car il faut, en effet, resituer cette question évolutive dans un cadre bio-éco-géographique plus vaste, plutôt que de se limiter à un cadre anatomique. Les résultats des différents domaines ne concordent pas toujours, c'est ainsi souvent le cas de la biologie moléculaire et de la paléontologie, car les données néontologiques ne prennent pas la dimension essentielle de l'évolution, la quatrième dimension : le temps. L'étude des grands singes et des hommes actuels nous permet de clarifier les relations de parenté, mais le tempo de leur histoire ne nous est fourni que par la paléontologie. Les données de terrain très fructueuses ces dix dernières années nous obligent à remonter au-delà de 6-7 millions d'années, pour comprendre la manière dont la lignée des grands singes s'est isolée de celle de l'homme. Quelles sont ces nouvelles découvertes? Quels sont les nouveaux enjeux? C'est à ces questions que nous allons essayer de répondre dans la suite de cet exposé.

L'apport de la biologie moléculaire
La phylogénie en question
Les molécularistes et les paléontologues s'accordent aujourd'hui sur le fait que les grands singes asiatiques sont des parents relativement éloignés de nous, alors que leurs cousins africains semblent nous être plus proches ; mais au sein de ces derniers, peut-on isoler un genre une espèce plus privilégiée? En d'autres termes, le chimpanzé est-il notre plus proche cousin ? Est-ce le bonobo (ou chimpanzé nain) ? Ou bien l'ensemble gorille-chimpanzé ? Ou bien les chimpanzés, les gorilles et les hommes sont-ils aussi éloignés les uns des autres ? Selon les méthodes d'analyses, il apparaît que tous ces schémas sont possibles. Toutefois, certains auteurs ont largement médiatisé un rapprochement exclusif chimpanzés-hommes. Ceci serait conforté par les études sur l'ADN et l'ADN mitochondrial, alors que d'autres travaux révèlent des branchements différents. Ce qui reste sûr aujourd'hui est que les plus proches parents de l'homme sont africains et que leur ancêtre est, lui aussi, plus vraisemblablement africain.
L'horloge moléculaire
Le concept d'horloge moléculaire est basé sur la constatation que la mesure des divergences des séquences d'acides aminés est corrélée au temps. Les changements sont censés s'opérer à des rythmes constants à partir d'une date de divergence paléontologique donnée (soit celle des ruminants, soit celle des cercopithèques, etc.) ; ce n'est donc pas une méthode indépendante. Or, selon les auteurs, ou selon les groupes utilisés pour calibrer, les résultats sont très différents et on a obtenu des dates variant de 2 millions d'années à plus de 15 millions d'années pour la dichotomie hommes/grands singes. Toutefois, il a été démontré que l'horloge moléculaire ne marche pas, en fait, à vitesse constante. Le taux auquel les changements sont incorporés dans les populations varient en fonction des temps de génération, l'isolation génétique etc. C'est pourquoi, l'horloge est différente entre les éléphants et les souris, il est évident que la souris se reproduisant plus vite, le renouvellement génétique est plus rapide. Par ailleurs, il y a une variation au sein d'une même espèce. La même chose est vraie au sein des primates si on compare des lémuriens ou des chimpanzés. Enfin, il apparaît que sur de longues périodes, l'horloge devient imprécise. L'horloge moléculaire ne marche pas donc pas à la même vitesse dans tous les groupes de mammifères et pour dater les divergences, il convient donc d'utiliser les données temporelles fournies par les fossiles.

Les grands singes et leurs caractères de vie.
Dimorphisme sexuel
Les grands singes de grande taille se caractérisent généralement par de forts dimorphismes de taille et de morphologie liés au sexe. Un des caractères les plus utilisés chez les primates est la canine. Chez les mâles, la racine est massive et a pratiquement la même taille que la base de la couronne. Chez les femelles, la racine plus petite est rétrécie à la base de la couronne. Ce caractère s'observe chez les grands singes actuels et fossiles. Par ailleurs, chez les mâles, les racines étant beaucoup plus grandes, le museau est gonflé et aussi plus projeté vers l'avant, ce qu'on appelle le prognathisme. Quelquefois, cette projection est si importante que la morphologie faciale des mâles et des femelles est aussi très différente. C'est ce qui rend souvent l'interprétation des fossiles isolés difficile. C'est le cas notamment du fameux Kenyapithèque du Kenya considéré longtemps comme un hominidé ancien car sa canine était petite et sa face peu projetée. Or, la une nouvelle études de ces matériels a montré que les spécimens incriminés appartenaient en fait à des individus femelles et Kenyapithecus était une forme éteinte de grand singe, pas placée en position particulière dans notre arbre phylogénétique. La même chose est arrivée avec les Ramapithèques asiatiques. Mais il est intéressant de constater que de nombreux spécimens sensés être nos ancêtres étaient en fait des femelles de grands singes et que les ancêtres de grands singes étaient de mâles... ! C'est le cas typique du groupe des Sivapithèques et Ramapithèques: les premiers ont été considérés comme des ancêtres des orangs-outans et les Ramapithèques, ancêtres de l'homme. Toutefois, lorsque les études sur le dimorphisme sexuel ont été développées au début des années 1980, on s'est rendu compte que les ramapithèques étaient les femelles des sivapithèques, ancêtres des grands singes de Bornéo et Sumatra. Cela allait même plus loin, car le genre Sivapithecus ayant été créé bien avant que celui de Ramapithecus, ce dernier nom devait être abandonné. Les ramapithèques qui avaient eu leur heure de gloire dans les années 1960 à 1980, disparaissaient du paysage paléontologique par le coup du dimorphisme sexuel.
Alimentation
Les primates actuels sont parmi les mammifères les plus diversifiés dans leur alimentation. Ayant accès à toutes les strates des canopées, comme au milieu terrestre, ils se nourrissent de feuilles, et/ou de fruits, et/ou de viande. Il n'est pas rare que les chimpanzés mangent des petites antilopes ou des petits cercopithèques. La morphologie dentaire observée reflète le mode d'alimentation le plus fréquent, mais un animal peut de temps à autres adapter son régime à ce que lui offre son environnement. Les gorilles sont inféodés à des milieux forestiers et se nourrissent de végétaux variés, herbacées et fruits. Le régime alimentaire peut être déduit non seulement des dents, mais aussi des os maxillaire et mandibulaire et de leurs insertions musculaires. Sur l'anatomie des dents, la morphologie des cuspides est assez typée chez les chimpanzés avec des tubercules placés à la périphérie de la couronne et montrant un grand bassin central ; et chez les gorilles avec des tubercules placés à la périphérie mais plus acérés et un bassin central moins élargi. Chez l'homme, qui est un hominoïde à part entière, les tubercules sont globuleux, assez bas et plus centraux. Un autre aspect de la morphologie dentaire concerne l'émail : la variation de son épaisseur reflète également la qualité de ce que l'animal ingère ; ainsi si l'animal consomme plus fréquemment des fruits, l'émail est plus fin et s'il consomme des aliments plus coriaces, l'épaisseur de l'émail est plus épais. En gros, cela semble vrai, mais il faut aussi prendre en compte la surface triturante de la dent, sa croissance et donc sa taille. Les replis de l'émail plus prononcé chez les chimpanzés nous apportent aussi des informations sur le style de nourriture qu'ingurgitent les grands singes. On voit tout l'intérêt de bien comprendre les morphologies actuelles pour déduire des interprétations sur les fossiles.
Locomotion
Les modes de locomotion sont aussi très diversifiés chez les grands singes puisqu'ils varient de la suspension, au grimper vertical, marche sur les branches sur les quatre pattes arrière ou sur les deux pattes arrière. Mais les grands singes pratiquent aussi une marche particulière appelée le knuckle-walking, littéralement la marche sur l'articulation des phalanges antérieures repliées.
C'est le mode classique de déplacement des chimpanzés, qui est un peu modifié chez les gorilles, beaucoup plus lourds. Le mode de déplacement est lié en grande part à la taille de l'animal : ainsi, un gorille mâle de plus de 200 kgs peut difficilement se suspendre aux branches d'arbres, alors que le petit beaucoup plus léger en sera capable. Mais aucun de ces grands singes n'est assez léger pour pratiquer le déplacement acrobatique adopté par les gibbons d'Asie du Sud-Est. Un mode de déplacement utilisé par tous les grands singes plus ou moins fréquemment ou plus ou moins occasionnellement est la marche bipède. Aujourd'hui, le seul hominoïde capable de se déplacer pour la plus grande partie de son temps sur ses deux pattes arrière est l'homme. L'adaptation à la bipédie permanente est un des caractères qui est généralement utilisé pour définir le genre Homo. Chez les fossiles, on observe des bipédies différentes de celles de l'homme actuel, celle des Oréopithèques de Toscane étant probablement la plus éloignée de la nôtre, celle des Australopithèques en étant la plus proche. Les paléontologues n'ont pas à leur disposition tous les ligaments, muscles, etc... , mais l'os enregistre le mouvement le plus fréquemment réalisé ; et par comparaison avec les animaux actuels on peut reconstituer des types de mouvements, puis des associations de mouvements qui débouchent sur des scénarios locomoteurs. Pendant près d'un siècle, les anthropologues ont focalisé leurs travaux sur les restes crâniens et dentaires, parties nobles du squelette pour reconstituer les scénarios de nos origines, mais depuis la fin des années 1970, on s'aperçoit que les modes de locomotion apporte eux aussi des informations à cette quête, et ils sont aujourd'hui considérés comme des éléments à part entière. En fait, la reconstitution des modes locomoteurs passés est essentielle.
Les grands singes fossiles
Les grands singes fossiles sont connus dès l'Oligocène supérieur en Afrique orientale et sont représentés par quelques pièces dentaires attribuées à Kamoyapithecus. Mais c'est au Miocène inférieur que les grands singes vont s'épanouir en Afrique. Si pendant longtemps, on les a cru confinés à l'Afrique orientale, on les a retrouvés au début des années 90 en Egypte, puis en Afrique du Sud en 1996. Les restes extérieurs à l'Afrique orientale sont très peu nombreux : un humérus en Egypte au Wadi el Moghara et une demi-dent supérieure dans la mine de diamants de Ryskop en Afrique du Sud. En raison de leur faible nombre, ils n'ont pas pu être nommés formellement.
En Afrique orientale, par contre, on connaît de très nombreux grands singes de grande taille (dont certains équivalents à un gorille) et de petite taille (proche de celle des gibbons). Nous nous focaliserons sur ceux de grande taille parmi lesquels nous recherchons nos ancêtres.
Les plus connus des grands singes de la période de 22 à 17 Millions d'années environ sont les Proconsul. Très bien représentés au Kenya et en Ouganda par plusieurs formes qui ont la taille des chimpanzés et colobes actuels. Ce sont des grands singes généralisés par leur dentition et leur locomotion. Probablement adaptés à un régime plutôt frugivore, ils habitaient dans des environnements de forêt sèche où ils se déplaçaient à quatre pattes sur les branches, ou au sol. Ces reconstitutions sont basées sur les restes de plantes, de grands mammifères, de micromammifères et ceux d'escargots fossiles, notamment des très riches gisements de l'île de Rusinga au Kenya.
A la même époque les Ugandapithecus, de la taille du gorille, vivaient sur les pentes des volcans de Napak en Ouganda et à Songhor au Kenya. Assez lourds, ils vivaient probablement en partie au sol, mais ils pratiquaient également un grimper vertical. Leurs canines présentent un caractère tout particulier : le sommet de la dent est en forme de lame plutôt que conique. Leurs dents assez massives suggèrent qu'ils se nourrissaient de nourritures assez coriaces. Les Ugandapithèques sont connus jusqu'à la base du Miocène moyen (16-17 Millions d'années) en Afrique orientale, et spécialement sur le gisement de Moroto en Ouganda où ils côtoient les Afropithèques, de taille plus modeste, découverts également sur la rive occidentale du Lac Turkana au Kenya. Entre 17 et 12 millions d'années les grands singes connaissent un second buissonnement avec les Turkanapithèques du Lac Turkana, les Nacholapithèques des Collines Samburu. Dans les gisements de l'île de Maboko on trouve les Kenyapithèques, dont l'espèce présente à Fort Ternan ( Kenyapithecus wickeri) sera considérée, dès sa découverte, comme un hominidé ancien. Cependant, les caractères utilisés à l'époque (petite canine, face plate, émail épais) se sont avérés, pour les premiers, des caractères de dimorphisme sexuel et, pour le dernier, un caractère classique des grands singes du Miocène moyen dont les l'alimentation est basée sur des végétaux plutôt durs. Le Kenyapithèque de Fort Ternan avait aussi été considéré comme un hominidé sur la base de présence de galets utilisés trouvés avec les fossiles. Toutefois, ces cailloux « utilisés » se sont avérés être des pierres de lave brisés naturellement. Par ailleurs, on sait aujourd'hui que d'autres primates utilisent des outils ou manipulent et cela ne leur donne pas automatiquement le statut d'hominidé.
Après avoir longtemps été considérés comme des animaux typiquement est-africains, les grands singes voyaient leur aire de répartition considérablement augmentée par la découverte d' Otavipithecus namibiensis au nord-est de la Namibie. Ils avaient toutefois été signalés en 1975 en Arabie saoudite qui, à l'époque où ils vivaient, était rattachée à l'Afrique orientale. L'Otavipithèque ne ressemble à aucun des grands singes classiques est-africains de l'époque, par sa mâchoire étroite, ses dents aux cuspides gonflées, mais cela n'est pas surprenant car il vivait dans une région très excentrée, par rapport à celle où vivaient les autres grands singes de la même époque.
C'est probablement vers ce moment-là que les grands singes vont émigrer vers l'Eurasie; ainsi, on les retrouve en France, en Espagne, en Hongrie, en Grèce, en Inde, au Pakistan, en Turquie, en Chine... où ils prennent les noms de Dryopithèques, Ankarapithèques, Sivapithèques, Ouranopithèques, Lufengpithèques, etc... Certains d'entre eux, bien que considérés par plusieurs auteurs comme des ancêtres potentiels des Hominidés, semblent plus probablement se rapprocher des grands singes asiatiques modernes. Les caractères utilisés pour en faire des Hominidés se sont avérés être souvent des caractères hérités des grands singes africains antérieurs et non pas dérivés d'Hominidés, et dans certains cas dérivés d'Orangs-outans ou même encore liés au dimorphisme sexuel observé classiquement chez les grands singes actuels et fossiles.

Le trou noir- la divergence
Le trou noir correspond à cette période pendant laquelle nous ne connaissions pratiquement rien au début des années 1990 entre les grands singes du Miocène et les premiers Hominidés avérés, les Australopithèques, c'est à dire environ entre 10-12 millions d'années et 4,2 millions d'années. A l'époque, les quelques pièces fossiles, toutes kenyennes, pouvaient se compter sur les doigts des deux mains: un fragment de maxillaire trouvé au début des années 80 dans les Samburu Hills et vieux de 9,5 millions d'années, une dent isolée dans la Formation de Lukeino datée de 6 millions d'années, un fragment d'humérus vieux de 5,1 millions d'années, un fragment de mandibule à Tabarin vieille de 4,5 millions d'années, un fragment de mandibule à Lothagam (aujourd'hui redatée à 4,2 millions d'années environ). Les nombreuses expéditions menées en Afrique depuis la dernière décennie ont pratiquement triplé le matériel connu au début des années 1990; il n'est donc pas surprenant que les scénarios de nos origines soient largement discutés. A part le maxillaire des Samburu, tous ces fossiles étaient rapportés aux Hominidés. Dans tous les scénarios évolutifs ces restes ont été considérés comme appartenant obligatoirement à des ancêtres des Australopithèque et donc des Hominidés. En fait, les chercheurs dans leur grande majorité ont focalisé leurs travaux sur les Australopithèques et toute pièce hominidée trouvée dans des niveaux plus anciens était systématiquement considérée comme un ancêtre de ceux-ci et donc des hommes. L'évolution était linéaire, ce qui malheureusement ne semble pas très biologique. En effet, jusqu'à 12 millions d'années environ, les grands singes sont largement représentés en Afrique; il faudrait donc admettre que ces derniers disparaissent pour laisser la place à une seule lignée et que celle-ci soit obligatoirement ancestrale à l'homme. Cette interprétation nie le phénomène de radiation chez les grand singes et les hominidés anciens. Vers 6 millions d'années environ, on sait que les grands groupes de mammifères sont très diversifiés et il est probable que les primates (grands singes et hommes inclus) n'ont pas échappé à la règle.
Samburupithecus
Le premier acteur dans ce trou noir est Samburupithecus; découvert au début des années 1980 dans les Samburu Hills au Kenya (mais publié seulement en 1994), il est connu exclusivement par un fragment de maxillaire portant les 2 prémolaires et les 3 molaires. Par certains aspects, il rappelle les gorilles, notamment pas la morphologie de son museau, la position de l'arcade zygomatique relativement basse et antérieure sur la mâchoire. Les tubercules de ses dents sont, en revanche, gonflés; il s'agit sans doute d'une femelle comme le suggère l'alvéole préservée de la canine qui indique que la racine de cette dernière était petite. Par ses caractères, cette pièce pourrait être considérée comme un ancêtre des grands singes et de l'homme, ou un ancêtre de gorilles, mais il faut plus de matériel pour conclure.
Ardipithecus ramidus
En 1994/1995, Ardipithecus ramidus, vieux de 4,4 millions d'années venait combler une lacune dans l'histoire de la dichotomie des grands singes et de l'homme. Découverts en Ethiopie dans la Vallée moyenne de l'Aouache, les restes attribués à cette espèce se composent de dents isolées, de quelques os postcrâniens fragmentaires un petit fragment crânien et un squelette partiel qui n'est toujours pas publié. Ces éléments furent rapportés à un hominidé, mais si certains caractères de ses canines l'en rapprochent effectivement, toute une suite d'autres l'en isolent comme l'épaisseur de l'émail dentaire ou la taille de la canine par rapport aux dents jugales. Le squelette indiquerait une adaptation à la bipédie, mais les restes publiés à ce jour ne permettent pas cette affirmation. Ardipithecus ramidus est-il un hominidé ou un grand singe? Il est bien difficile de conclure à la lueur des éléments disponibles.
Orrorin tugenensis
A l'automne 2000, une douzaine de restes dentaires, mandibulaires et postcrâniens d'un hominidé étaient trouvés dans la Formation de Lukeino au Kenya qui avait déjà livré une dent isolée en 1974. Les gisements qui ont livré les fossiles s'échelonnent dans le temps entre 6,0 et 5,7 millions d'années; le gisement le plus riche étant celui de Kapsomin situé à la base de la formation. Les dents en général sont petites, proches en taille de celles de chimpanzés et des hommes actuels, mais leur forme plus carrée les rapproche des seconds. La morphologie de la canine supérieure portant une gouttière verticale ou la première prémolaire inférieure avec ses racines décalées rappelle la morphologie observée chez les grands singes actuels et fossiles. Toutefois, les tubercules dentaires ne présentent pas les ridulations d'émail classique chez les grands singes, la morphologie de la canine inférieure est intermédiaire entre celle des grands singes et celle de l'homme, l'émail est épais, la face interne des molaires est verticale. La partie antérieure de la mandibule est droite et on n'observe aucun espace (diastème) entre la canine et la première prémolaire inférieures. L'ensemble des caractères dentaires rapprochent Orrorin des hominidés.
La découverte d'Orrorin était importante également par le fait que des restes postcrâniens étaient signalés, dont des fémurs relativement bien conservés. C'est l'étude du fémur qui a montré que Orrorin était bipède. Ceci s'exprime par un col fémoral allongé et aplati antéro-postérieurement, la position de la tête fémorale, la position des insertions musculaires, la distribution de l'os cortical (épaissi à la partie inférieure et plus mince à la partie supérieure) sur la coupe du col fémoral, et la présence en vue postérieure d'une gouttière pour le muscle obturator externus. La plupart de ces caractères sont présents chez les Australopithèques et l'homme et sont classiquement associés à la bipédie. Cependant, certaines différences d'avec les Australopithèques (en particulier, orientation de la tête fémorale, position du petit trochanter) et une meilleure ressemblance avec les hommes indiquent que cette bipédie est plus humaine que celles de Australopithèques. Cet hominidé pratiquait donc probablement habituellement la bipédie; toutefois, il n'est pas encore affranchi du milieu arboré, comme le montrent son humérus et ses phalanges de main.
Orrorin n'est pas un être petit puisque les mesures de son humérus et de son fémur indiquent qu'il était une fois et demie plus grand que Lucy, la célèbre Australopithèque de l'Afar. Cette dernière est de taille modeste, mais possède des dents assez grosses (mégadonte); en revanche, chez Orrorin, l'inverse est vrai, le corps est plus grand mais les dents plus petites (microdonte). Si Orrorin devait être un ancêtre des Australopithèques, eux-mêmes ancêtres de l'homme, il faudrait admettre que des êtres microdontes auraient donné naissance à des mégadontes, qui eux-mêmes auraient donné naissance à des microdontes. Ces aller-retours anatomiques qui touchent à la fois le système masticateur et le système locomoteur semblent douteux et c'est pour cela que nous considérons les Australopithèques comme une branche à part de notre famille. Lors de sa découverte en 2000, Orrorin était le premier Hominidé connu antérieur à 5 millions d'années et sa présence si ancienne remettait en cause les données moléculaires en suggérant une dichotomie entre les grands singes et l'homme très ancienne (bien antérieure à 6 millions d'années).
Ardipithecus ramidus kadabba
Le débat sur nos origines était relancé en juillet 2001 avec la publication d'une sous-espèce d'Ardipithèque, Ardipithecus ramidus kadabba, découverte en Ethiopie dans des niveaux vieux de 5,7 à 5,2 millions d'années. Elle est représentée par des dents et os isolés (notamment fragment d'humérus et phalanges du pied et de la main). Elle se différencie des grands singes actuels par la tendance des canines à être incisiformes et la morphologie générale de ces dernières; mais, elle s'isole également d' Ardipithecus ramidus ramidus par la morphologie des P3 et M3 supérieures et de la canine inférieure. Les caractères des éléments post-crâniens rappellent ceux des grands singes et de certains spécimens de Hadar et suggéreraient des adaptations à la vie arboricole. Même si selon les auteurs, on peut considérer cette sous-espèce d'Hominoïde comme un Hominidé, il n'en reste pas moins qu'un certains nombre de caractères rappellent les grands singes et que les différences d'avec l'autre sous-espèce méritent clarification.
Sahelanthropus tchadensis
Puis, un an après la découverte éthiopienne étaient publiés les restes d'un hominoïde vieux de 6 à 7 millions d'années, trouvés au Tchad, très loin à l'Ouest de la fameuse faille est-africaine. La pièce la plus médiatique est un crâne légèrement écrasé rapporté par ses inventeurs à un Hominidé sur la base en particulier de la petite taille de la canine, le mode d'usure de cette dernière, l'aplatissement de la face, la position dite « plus antérieure » du foramen magnum. Selon les auteurs, le bourrelet sus-orbitaire très massif indiquerait que le crâne appartenait à un individu mâle. Les autres caractères incluent entre autres: des dents jugale (molaires et prémolaires basses), l'émail intermédiaire en épaisseur entre celui des chimpanzés et des Ardipithèques, une morphologie supra-orbitaire robuste (probablement mâle selon les auteurs), un plancher nuchal plat et des insertions musculaires puissantes dans la région nuchale.
La petite canine n'est pas un caractère d'Hominidé sensu stricto comme signalé plus haut; en effet, chez les grands singes miocènes et modernes, la taille de la canine est le plus souvent l'expression du dimorphisme sexuel. La canine du mâle étant beaucoup plus développée, il s'ensuit un gonflement de la région faciale qui reçoit la racine de la dent, alors que chez la femelle, le gonflement est réduit en liaison avec une racine de taille plus modeste; d'où l'aspect plus plat de la face.
La taille du bourrelet sus-orbitaire n'est pas classiquement utilisé pour sexer des crânes isolés. Chez les chimpanzés ou les gorilles actuels, le bourrelet sus-orbitaire apparaît fort chez les mâles, comme chez les femelles au sein d'une même population; il est en général un peu plus fort chez les mâles. Sur un crâne isolé, il est très difficile de déterminer le sexe de l'individu à partir de ce seul caractères. En dehors du fait que la position antérieure du foramen magnum n'est pas confirmée, il faut être prudent car celle-ci n'est pas liée exclusivement à la bipédie, elle aurait, pour certains, un lien avec le développement cérébral Parmi les caractères décrits, certains semblent rapprocher plus volontiers la pièce des grands singes : aplatissement du plancher nuchal, systèmes des crêtes postérieures et le spécimen, probablement femelle n'apparaît pas très différent de celui des grands singes actuels, en particulier des gorilles. Si cette hypothèse s'avérait confirmée, cela rendrait la découverte tchadienne encore plus intéressante scientifiquement, car elle commencerait à combler l'immense lacune de l'histoire des grands singes africains entre 12 millions d'années et aujourd'hui.

L'origine de l'homme : une histoire de climat ?
Si on veut comprendre l'histoire de nos origines, on ne peut pas se limiter à l'étude des modifications anatomiques de nos ancêtres potentiels. Ces derniers ont vécu dans un environnement qui s'est transformé au cours des temps géologiques en liaison avec les modifications climatiques, géographiques, tectoniques et autres. Un vieux mythe qui encombre encore certains de nos ouvrages est la naissance de l'homme et de sa bipédie dans un milieu ouvert de savane. Or, les dernières données suggèrent que le milieu dans lequel vivait Orrorin ou ses parents Ardipithecus était plutôt humide. En particulier, dans l'environnement d' Orrorin, les colobes et les impalas dominaient la faune; ces espèces ne vivent pas en milieu ouvert : les colobes sont des animaux très arboricoles et les impalas vivent plutôt dans des fourrés. D'où probablement les adaptations à la vie arboricole encore bien marqués chez eux comme chez les premiers australopithèques.
Une hypothèse séduisante a été proposée par Coppens au début des années 1980 : la fameuse « East Side Story ». Dans cette hypothèse éco-climatico-géographique, le rift jouait un rôle majeur: des grands singes auraient été largement distribués en Afrique au Miocène, puis vers 8 millions d'années, une réactivation de la faille aurait engendré la coupure en deux de cette population ancestrale, l'une à l'Ouest aurait donné les grand singes actuels africains restés inféodés au milieu forestier et l'autre aurait évolué vers l'homme dans un milieu plus sec (mais pas forcément de savane sèche, ni de désert). Toutefois, vers 8 millions d'années, il y a une modification du climat à l'échelle du monde. L'établissement de la calotte polaire arctique a entraîné le mouvement vers le Sud des ceintures climatiques mondiales, affectant ainsi la température de l'eau de océans, la répartition des faunes et leur composition. Les grands singes faisant partie de cette faune n'ont probablement pas échappé à ce grand remaniement. L'événement a été ressenti à l'échelle du globe de l'Amérique à l'Europe en passant par l'Afrique. C'est à cette époque que se met en place le Sahara. Le changement faunique a aussi coïncidé avec l'effondrement du rift et des changements à l'échelle locale ont pu avoir lieu. Si l'hypothèse de l'East Side Story a souvent été caricaturée, elle n'en demeure pas moins valide dans l'état actuel de nos connaissances d'un point de vue chronologique et climatique.

Quel(s) ancêtre(s)
Selon certains auteurs, les hominidés antérieurs à 3,5 millions d'années sont les ancêtres des Australopithèques, eux-mêmes ancêtres des hommes. Les découvertes réalisées récemment dans le Miocène supérieur et le Pliocène suggèrent que la diversité des formes a été plus importante et en fait, il semble bien qu'il y ait eu une lignée mégadonte Australopithèque qui s'est éteinte vers 1,4 Millions d'années avec peut-être certains ardipithèques à sa base et une lignée plus microdonte avec Orrorin, Praeanthropus et les Homo anciens. L'origine de ces lignées est à rechercher au-delà de 6 millions d'années et peut-être jusqu'à 12-13 Millions d'années. Qui sont les ancêtres des grands singes africains modernes ? Des fossiles découverts récemment au Kenya suggèrent que des formes proches des chimpanzés auraient pu être présents dès 12,5 millions d'années dans la Formation de Ngorora, Certains Ardipithèques en seraient-ils les descendants? Une dent fragmentaire de 6 millions d'années trouvée au Kenya semble proche des gorilles et à la même époque ces derniers auraient pu être au Tchad. Quoiqu'il en soit, il apparaît que la dichotomie entre les grands singes africains et l'homme est plus ancienne que ne le suggèrent les données moléculaires et que la découverte de tout jalon sur la lignée des premiers sera un apport essentiel à la compréhension des autres. Mais où se situe l'origine des hominidés ? est-elle donc à l'Est ? ou ailleurs ? Si on en croit l'Abbé Breuil, le berceau est à roulettes. Si on s'en tient aux données actuelles, l'Afrique orientale semble renfermer les plus anciennes traces d'hominidés. Si le matériel tchadien était confirmé dans son statut d'hominidé, l'Afrique centrale tiendrait peut-être le flambeau. Mais finalement, cela n'a pas grande importance lorsqu'on réalise que 3% peut-être du continent africain sont aujourd'hui prospectés. Nos scénarios sont forcément voués à changer. En revanche, on peut affirmer aujourd'hui que des êtres bipèdes très anciens sont connus vers 6 millions d'années en Afrique et qu'ils vivaient dans un milieu plus humide qu'on ne le pense généralement.

 

VIDEO              CANAL  U              LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

VOYAGE AU CENTRES DES PROTEINES

 

Texte de la 598 e conférence de l'Université de tous les savoirs prononcée le 20 juillet 2005


Par Eva Pébay-Péroula: « Voyage au centre des protéines »
Introduction 2
1. Importance des protéines dans la composition des cellules 2
La composition chimique des protéines 2
Le repliement des protéines 3
Intérêt des études structurales 4
2. Comment déterminer la structure d'une protéine 4
Principe de base de la cristallographie 4
L'utilisation du rayonnement synchrotron 6
La procédure expérimentale 6
Les approches complémentaires 7
3. Les protéines membranaires 7
La bactériorhodopsine 8
Le transporteur ADP/ATP 10
4. La biologie structurale de demain 13
Introduction
Les protéines sont les principaux acteurs du vivant, non seulement par leur quantité (environ 70 % en masse des molécules constituant une cellule), mais surtout par la diversité des fonctions qu'elles exercent, allant de la catalyse de réactions chimiques jusqu'à la structuration de la matière vivante, en passant par des rôles de moteurs moléculaires ou encore de communication entre cellules. Elles sont formées de longues chaînes d'acides aminés, qui se replient dans l'espace ; cette structure tri-dimensionnelle est à la base de la fonction assurée par la protéine. Connaître la structure aux détails atomiques près, comprendre ses propriétés dynamiques, suivre les changements de conformation d'une protéine en action, intégrer ces connaissances aux données biochimiques et fonctionnelles constituent le coeur de la biologie structurale et permet d'avancer considérablement dans la compréhension de la fonction des protéines. Au cours de cet exposé, après avoir introduit quelques notions de base sur la composition des protéines, nous aborderons les méthodes expérimentales permettant de sonder la structure des protéines et illustreront ensuite l'intérêt de ces études sur quelques exemples.
1. Importance des protéines dans la composition des cellules
La composition chimique des protéines
Les protéines sont des macromolécules faites par un enchaînement d'acides aminés (plusieurs centaines). Ces acides aminés sont choisis parmi 20, et diffèrent l'un de l'autre par un groupement chimique (chaîne latérale). Ces chaînes latérales ont des propriétés chimiques différentes, certaines sont chargées (positivement ou négativement) ou polaires, d'autres encore sont hydrophobes, certaines contiennent un cycle aromatique. Les séquences de protéines décrivent l'enchaînement des acides aminés et sont inscrites dans les chromosomes. Les suites d'acides nucléiques dans les gènes correspondent à une suite d'acides aminés, selon un code dans lequel trois acides nucléiques représentent un acide aminé. Pour décrire une protéine d'un point de vue chimique, il suffit de connaître la suite d'acides aminés. Si chaque acide aminé est représenté par une lettre, alors une protéine s'écrit de la façon suivante :De façon plus explicite, la formule chimique plane d'un extrait de la séquence, par exemple celui correspondant à « WVDFSSR » s'écrit (les flèches indiquent la fin d'un acide aminé et le début du suivant):
Cette information est-elle suffisante pour connaître et comprendre la fonction d'une protéine ? La séquence en acides aminés, par comparaison à d'autres protéines, peut éventuellement donner des indications sur la fonction ou au moins une partie de la fonction. Mais ces informations sont insuffisantes et ne permettent pas de comprendre les mécanismes d'action dans lesquels la protéine est impliquée.
Le repliement des protéines
Les protéines in vivo se replient pour former une architecture tri-dimensionnelle. Leur fonction est corrélée à ce repliement. Les interactions mises en jeu sont toutes des interactions non-covalentes de faible énergie : liaisons Hydrogène, interactions électrostatiques, contacts de type van der Waals et effets hydrophobes. L'énergie impliquée dans ces types d'interaction est environ dix fois plus faible que l'énergie présente dans une liaison covalente. Ces interactions sont nombreuses, elles font aussi intervenir le solvant (les molécules d'eau, les ions présents dans le solvant). Actuellement, on ne sait pas prévoir par des calculs de dynamique moléculaire ou de minimisation d'énergie le repliement d'une protéine. En général, le calcul d'énergie montre un ensemble de minima proches, une petite imprécision sur un des paramètres de calcul peut entraîner des différences finales importantes. La structure d'une protéine correspond donc à une conformation stable mais modifiable en fonction de l'environnement puisqu'elle repose sur des interactions faibles. Cette propriété est à la base de nombreuses propriétés fonctionnelles. Les modifications de conformations peuvent résulter par exemple, d'un changement de pH, d'une interaction avec une petite molécule ou encore d'une interaction avec d'autres macromolécules (protéines, membranes, ADN,...). Les variations de conformations par rapport à la structure des protéines « au repos » sont donc importantes à connaître pour comprendre la fonction.
Intérêt des études structurales
Le but de la biologie structurale est donc de déterminer les structures de macromolécules (protéines, acides nucléiques, complexes protéines-protéines, protéines-acides nucléiques, protéines-lipides), de comprendre les propriétés dynamiques de ces assemblages, de suivre les changements de conformations en cours d'action et de mettre ces informations en lien avec les données fonctionnelles afin de comprendre les mécanismes moléculaires. L'intérêt de comprendre les mécanismes moléculaires est tout d'abord fondamental. Comprendre le bon fonctionnement d'une cellule eucaryote ou procaryote permet aussi de comprendre le dysfonctionnement, du par exemple à des protéines modifiées dans le cas de maladie génétique, à l'entrée et la propagation d'organismes pathogènes dans les cellules, ou encore à l'apparition de souches bactériennes résistantes aux antibiotiques. Connaître l'architecture précise des protéines cibles de médicaments permet de concevoir de façon rationnelle des nouvelles molécules, médicaments potentiels, ayant une spécificité très grande pour la cible et pouvant donc être utilisées à faible dose avec peu d'effets secondaires. La biologie structurale se situe donc à l'interface de la biologie, de la chimie et de la physique. Le problème à résoudre est biologique, les mécanismes réactionnels de catalyse enzymatique sont des processus chimiques. La physique contribue de façon importante aux méthodes expérimentales (cristallographie, diffusion du rayonnement, microscopie électronique,..), aux approches de modélisation (dynamique moléculaire), et aussi à la compréhension de certains processus (par exemple la contraction musculaire ou le fonctionnement de moteurs moléculaires).
2. Comment déterminer la structure d'une protéine
Dans la « Protein Data Bank » (PDB) sont présentes plus de 30 000 structures de protéines. Une majorité de ces structures ont été résolues par diffraction des rayons X, certaines par RMN, enfin un très petit nombre par diffraction des électrons. La méthode la plus courante est donc la cristallographie des rayons X.
Principe de base de la cristallographie
Le principe de base de la cristallographie repose sur l'interaction entre particule et rayonnement. En effet, un rayonnement envoyé sur une molécule va être diffusé par celle-ci et les caractéristiques de l'onde diffusée dépendent de la structure (et de la nature) des atomes rencontrés par l'onde incidente. Les principes physiques impliquent que d'une part, une interaction est nécessaire entre l'onde et la molécule et que d'autre part, la longueur d'onde de l'onde incidente doit être de l'ordre de grandeur des distances que l'on cherche à sonder. Par exemple, les rayons X ayant une longueur d'onde de l'Ångström sont intéressants car ce sont des ondes électromagnétiques qui interagissent avec les électrons (donc avec les atomes d'une molécule) et la longueur d'onde correspond aux distances interatomiques. La diffusion d'un tel rayonnement par une protéine contient toute l information sur les atomes de la protéine (nombre d'électrons donc nature des atomes et distances interatomiques donc structure de la protéine). Néanmoins, cette diffusion est tellement faible qu'elle ne peut être mesurée et pour l'augmenter il convient de prendre un grand nombre de molécules. Si ces molécules sont en solution, leur orientation relative sera aléatoire et la diffusion totale contiendra l'information d'une molécule mais moyennée suivant les orientations des molécules par rapport au faisceau incident. À l'autre extrême si on sait empiler de façon ordonnée un grand nombre de molécules, on forme alors un cristal à trois dimensions, le signal résultant est amplifié suivant des directions de diffusion privilégiées et nulle en dehors de ces directions (c'est le phénomène de diffraction ou d'amplification de Bragg).
En haut, exemples de cristaux. En bas, images de diffraction recueillies sur le détecteur.
Entre les deux situations extrêmes, molécules en solution ou molécules dans un cristal tri-dimensionnel, il existe des arrangements intermédiaires comme, par exemple, les fibres, arrangement à une dimension, utilisées pour résoudre la structure de l'ADN en 1953. La méthode la plus attractive est la cristallographie par rayons X utilisant des cristaux à trois dimensions, car si la qualité des cristaux est suffisante, on peut remonter à des structures avec une précision de positionnement des atomes meilleures que l'Å (10-10 m). Néanmoins, l'obtention de ces cristaux n'est pas toujours possible (les protéines peuvent être flexibles), et les autres approches sont alors complémentaires. En particulier, la diffusion des rayons par X par des protéines en solution a fait des progrès spectaculaires ces 4 dernières années grâce à l'amélioration des données expérimentales, et surtout aux développements des méthodes mathématiques permettant d'exploiter les données expérimentales.
L'utilisation du rayonnement synchrotron
Le rayonnement synchrotron est émis par des particules chargées relativistes lors d'une trajectoire courbe. Typiquement, on accélère des électrons à une vitesse proche de celle de la lumière et on les injecte dans un anneau, dit anneau de stockage, dans lequel on leur impose une trajectoire circulaire. Ils tournent alors dans l'anneau en émettant un rayonnement synchrotron tangentiellement à leur trajectoire. Ce rayonnement est constitué principalement de rayons X et a des caractéristiques exceptionnelles par rapport aux rayons X produits par les appareils conventionnels de laboratoire (similaires aux appareils utilisés pour les radiographies médicales). Parmi ces caractéristiques, on peut mentionner l'intensité du rayonnement, la possibilité de choisir la longueur d'onde (le rayonnement synchrotron est « blanc » et contient toute une fenêtre de longueur d'ondes) ainsi que la faible divergence du faisceau. De façon très résumée, on pourra travailler avec des cristaux beaucoup plus petits (de la taille de quelques microns) ayant des mailles très grandes (de l'ordre de 1000 Å ou 100 nm).
La procédure expérimentale
De façon résumée, les étapes clés sont les suivantes : préparation de la protéine à cristalliser (en quantité et en qualité suffisante), obtention des cristaux tri-dimensionnels, caractérisation du cristal et enregistrement de l'intensité et de la direction des ondes diffractées par le cristal, détermination des phases associées aux ondes diffractées (cette étape bien que parfois délicate, ne sera pas détaillée ici), calcul de la densité électronique du cristal (par transformée de Fourier à partir des intensités et des phases des ondes diffractées dans toutes les directions), construction d'un modèle moléculaire cohérent avec la densité électronique, affinement de ce modèle soit par minimisation d'énergie soit par des procédés de dynamique moléculaire (la minimisation est basée sur l'énergie de la molécule mais tient compte aussi de l'accord du modèle et des données expérimentales), et analyse de la structure en lien avec les données biochimiques et fonctionnelles connues par ailleurs afin de dégager les implications sur la fonction des protéines. Les mécanismes fonctionnels proposés pourront alors servir de base à d'autres expériences afin d'être validés. Par exemple, le rôle de certains acides aminés mis en évidence par cette analyse pourra être testé en les changeant et en étudiant les propriétés fonctionnelles de la protéine mutante.
Les approches complémentaires
La cristallographie n'est pas la seule méthode pour accéder aux structures, la RMN est une méthode alternative intéressante pour les protéines de plus petites tailles. Alors que la microscopie électronique permet d'approcher des architectures macromoléculaires de grandes tailles. Les approches multiples permettent aussi de répondre à différentes questions : architecture globale, détails atomiques, réarrangements structuraux, interactions avec des partenaires, mécanismes enzymatiques. La cristallographie par RX, la RMN, la diffusion de neutrons ou de RX, les calculs de dynamique moléculaire, la microscopie électronique, font partie de ces méthodes. Les protéines modulaires illustrent bien la nécessité d'utiliser des approches complémentaires. Ces protéines sont flexibles car elles sont faites de plusieurs modules ayant chacun une structure et une fonction bien définies. Ces modules sont reliés par des liaisons flexibles et se structurent dans l'espace. Les protéines modulaires ressemblent à des « lego » moléculaires qui sont très dynamiques et peuvent se restructurer en cours de réaction.
3. Les protéines membranaires
Parmi toutes les protéines, les protéines membranaires sont particulièrement intéressantes et peu de résultats sont encore connus. Comme leur nom l'indique, elles sont intégrées dans les membranes, membranes qui délimitent les cellules ou les compartiments cellulaires, et qui sont constituées principalement de lipides et de protéines. De façon simplifiée, on considère que les lipides assurent la compartimentation et l'étanchéité, alors que les protéines assurent les fonctions de communication (signalisation, transport et diffusion d'ions ou de petites molécules). L'intérêt des protéines membranaires sera illustré à travers deux exemples liés à la production d'énergie nécessaire à la cellule. L'étape principale en est la synthèse de l'ATP, adénosine triphosphate, petite molécule qui sert de carburant à la cellule car son hydrolyse en ADP libère de l'énergie. La synthèse de l'ATP nécessite un gradient de protons de part et d'autre d'une membrane. Le premier exemple concerne une protéine membranaire bactérienne responsable du gradient de protons, la bactériorhodopsine. Le deuxième exemple est celui d'un transporteur présent dans les mitochondries.
Molécule d'Adénosine Diphosphate (ADP)
La bactériorhodopsine
Vue schématique de la conversion de l'énergie lumineuse dans la bactérie H. salinarum en énergie chimique sous forme d'ATP
Certaines bactéries peuvent utiliser directement la lumière pour générer le gradient de protons. Ceci est fait grâce à une protéine membranaire, la bactériorhodopsine, qui après avoir absorbé la lumière visible expulse un proton. Le gradient électrostatique ainsi généré, est ensuite utilisé pour faire fonctionner l'ATP-synthase. La bactériorhodopsine est largement étudiée par la communauté scientifique depuis 25 ans car c'est un système modèle à de nombreux titres. En particulier, sa fonction est intéressante car on peut la considérer comme un système de photosynthèse simplifié, son étude permet de progresser dans la compréhension de la conversion d'énergie et du transfert de protons. De plus, cette protéine membranaire peut être obtenue en quantité suffisante et pure, elle est donc aussi intéressante pour développer des méthodologies de cristallisation.
Vue générale du squelette de la bactériorhodopsine
Les études structurales de la protéine au repos et juste après illumination montrent qu'il existe une molécule d'eau piégée au centre de la protéine et que l'absorption de la lumière déstabilise cette molécule d'eau ce qui entraîne un réarrangement structural permettant le passage d'un proton. Cette molécule d'eau est donc un élément clé, et seule une étude structurale fine peut accéder à ces informations. Ces études permettent de mettre en évidence des modifications structurales de l'ordre de l'Å se produisant dans la première moitié de l'action et sont ainsi très complémentaires aux travaux faits en microscopie électronique à plus basse résolution permettant de visualiser les grands mouvements présents dans la deuxième moitié de l'action.
La bactériorhodopsine appartient à une famille de protéines, les archaerhodopsines. Toutes sont présentes dans les membranes des archaebactéries halophiles et ont la capacité d'absorber un photon visible. Malgré une similitude en séquence d'acides aminés très importante, ces protéines utilisent l'énergie des photons pour assurer des fonctions très diverses : pompe à proton (bactériorhopsine), pompe à chlore (halorhodopsine) ou phototactisme (rhodopsines sensorielles). Comparer structure et fonction devient alors très intéressant et permet de mettre en évidence des différences structurales faibles en lien avec des différences de fonctions importantes.
Détail structural au centre de la protéine montrant un réseau de liaisons Hydrogène ainsi que des molécules d'eau dont une (W402) est essentielle pour le transfert de protons.
Le transporteur ADP/ATP
Dans les cellules eucaryotes, le processus est plus complexe et la synthèse de l'ATP se fait dans un compartiment spécialisé, la mitochondrie. La création d'un gradient de protons de part et d'autre de la membrane interne des mitochondries implique un ensemble de protéines membranaires (chaîne respiratoire). Le flux de retour des protons fournit l'énergie nécessaire à la régénération de l'ATP à partir d'ADP au niveau de l'ATP-synthase. À cause du caractère fondamental de ces processus, mais aussi par la possibilité de purifier ces protéines en quantité suffisante, de nombreuses études structurales ont été entreprises sur toutes les protéines de la chaîne respiratoire et ont permis d'obtenir les structures de la cytochrome C oxydase, de la fumarate réductase, du complexe bc1 et de la partie extramembranaire de l'ATP-synthase de plusieurs organismes.
Vue schématique de la chaîne de production d'ATP
Afin de satisfaire ses besoins énergétiques, la consommation d'ATP chez l'humain représente sa propre masse en 24h. L'échange entre l'ADP hydrolysé dans le cytosol et l'ATP régénéré dans les mitochondries est donc important et nécessite un système d'import-export mitochondrial très performant pour les nucléotides. Cet échange est assuré par une seule protéine membranaire : le transporteur de nucléotides présent dans les membranes internes des mitochondries, la membrane externe pouvant être traversée plus facilement (et moins spécifiquement) à l'aide de porines. Comprendre le mécanisme de transport nécessite de comprendre la reconnaissance sur un coté de la membrane de la petite molécule à transporter, et ensuite les changements de conformations permettant de la relâcher de l'autre coté. L'amplitude des changements de conformation a besoin d'être contrôlée, ce contrôle est en partie assuré par l'environnement des lipides de la membrane.
Le transporteur de nucléotides appartient à une famille de transporteurs mitochondriaux tous impliqués dans des processus métaboliques importants. Environ 60 transporteurs ont été identifiés chez l'humain. Le dysfonctionnement de ces transporteurs entraîne des maladies graves. Le transporteur ADP/ATP est le mieux caractérisé de tous à cause de son abondance naturelle et sert donc de modèle. Il a été caractérisé grâce à l'existence de deux inhibiteurs naturels : le carboxylatractyloside (CATR, poison naturel présent dans des chardons méditerranéens) et l'acide bongkrékique (BA). Ces inhibiteurs bloquent l'entrée de l'ADP dans les mitochondries et la sortie de l'ATP, respectivement. Ils sont donc supposés bloquer deux états conformationnels extrêmes du transport. La structure du transporteur en présence de CATR à 2.2 Å de résolution montre qu'il est constitué de six hélices transmembranaires inclinées formant une ouverture conique profonde du coté externe et fermé du coté de la matrice mitochondriale. L'analyse fine de la cavité permet de mettre en évidence des acides aminés importants dans la reconnaissance des nucléotides. Ces résultats donnent une première vue moléculaire du processus de transport et permettent d'émettre des hypothèses qui devront ensuite être validées par d'autres expériences.
Structure du transporteur ADP/ATP : le repliement en six hélices coudées et inclinées donne une forme ouverte vers l'espace intermembranaire de la mitochondrie (haut) et fermée vers l'intérieure de la mitochondrie (bas).
Coupe au travers du transporteur montrant la cavité par laquelle l'ADP peut entrer pour accéder à l'intérieur de la mitochondrie où il sera régénéré en ATP.
4. La biologie structurale de demain
Après avoir connu une période descriptive, les sciences du vivant ces dernières décennies ont abordé une phase plus quantitative qui a nécessité des nouveaux outils. La biologie structurale a émergé au cours de cette période et a surtout progressé dans les vingt dernières années du 20ème siècle grâce à la biologie moléculaire qui a permis la production de protéines recombinantes et à l'utilisation du rayonnement synchrotron. Elle a été initiée par des physiciens ou des chimistes reconvertis à la biologie. La biologie structurale est au départ une approche réductionniste dans laquelle une fonction biologique est disséquée au niveau moléculaire et la structure de chaque macromolécule ainsi identifiée est analysée et reliée à sa fonction. L'enjeu est maintenant d'aller plus loin et de remonter aux architectures supramoléculaires présentes dans le contexte cellulaire, et de comprendre les propriétés structurales et dynamiques liées à leur assemblage, afin de relier ces propriétés aux fonctions biologiques des assemblages. Cela implique de pouvoir aborder des structures de complexes de plus en plus larges et souvent transitoires dans le temps. En plus de la structure, les propriétés dynamiques permettant les réarrangements structuraux nécessaires aux fonctions devront aussi être comprises. Les échelles sont nanométriques (et sub-nanométriques), les temps caractéristiques peuvent varier de la picoseconde (10-12 s, par exemple l'absorption de lumière) à la milliseconde (comme certains réarrangement structuraux). Certaines approches existent déjà et demandent à être améliorées (cristallographie RX, diffusion de neutrons, microscopie électronique, RMN,...), d'autres approches sont à inventer. Le contexte favorable nécessite une interdisciplinarité réelle, des domaines disciplinaires forts (en biologie, en chimie et en physique) ainsi qu'un terrain propice aux développements technologiques.
Comprendre les relations structures-fonctions de toutes les protéines importantes dans un contexte cellulaire aura des répercussions dans les domaines pharmaceutiques et biotechnologiques, mais contribuera surtout à comprendre les mécanismes fondamentaux en biologie.

 

VIDEO             CANAL  U              LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

FÉCONDATION

 

La fécondation est le processus complexe et indispensable qui conduit à la formation d'un nouvel être vivant. Mais pour féconder un ovule, un spermatozoïde doit d'abord connaitre un véritable parcours du combattant.

 

VIDEO         GENTSIDE        LIEN

 
 
 
 

COLLER LES GELS...

 

Paris, 11 décembre 2013


Une méthode révolutionnaire pour coller les gels et même les tissus biologiques


Des chercheurs viennent de découvrir une méthode efficace et facile à mettre en œuvre pour coller des gels et des tissus biologiques. Une équipe dirigée par Ludwik Leibler réunissant des chercheurs du laboratoire Matière molle et chimie (CNRS/ESPCI ParisTech) et du laboratoire Physico-chimie des polymères et milieux dispersés (CNRS/ UPMC/ESPCI ParisTech) a obtenu une adhésion très résistante entre deux gels en étalant sur leur surface une solution contenant des nanoparticules. Jusqu'à présent il n'existait aucune méthode entièrement satisfaisante pour obtenir l'adhésion entre deux gels ou deux tissus biologiques. Publiés en ligne sur le site de Nature le 11 décembre 2013, ces travaux pourraient ouvrir la voie à de très nombreuses applications médicales et industrielles.
Les gels sont des matériaux essentiellement composés d'un liquide, de l'eau par exemple, pris dans un réseau moléculaire qui leur confère leur solidité. Les exemples de gels dans la vie de tous les jours sont nombreux : la gélatine des desserts, la gelée de groseilles, les lentilles de contact ou encore la partie absorbante des couches-culottes. Les tissus biologiques comme la peau, les muscles ou les organes présentent de fortes similarités avec les gels. Jusqu'à présent, coller ces matériaux remplis de liquide, mous et glissants, à l'aide d'adhésifs habituels composés de polymères restait une gageure.  

Ludwik Leibler1  est reconnu pour l'invention de matériaux complétement originaux en combinant un intérêt industriel réel et une réflexion théorique profonde. Les travaux qu'il a menés en collaboration avec Alba Marcellan et leurs collègues, du laboratoire Matière molle et chimie (CNRS/ESPCI ParisTech) et du laboratoire Physico-chimie des polymères et milieux dispersés (CNRS/ UPMC/ESPCI ParisTech), ont abouti à un concept inédit : coller des gels en étalant sur leur surface une solution de nanoparticules.

Le principe est le suivant : les nanoparticules de la solution se lient au réseau moléculaire du gel, phénomène appelé adsorption, et, dans le même temps, le réseau moléculaire lie les particules entre elles. Les nanoparticules établissent ainsi d'innombrables connexions entre les deux gels. Le processus d'adhésion ne prend que quelques secondes. Cette méthode est réalisée sans ajout de polymères et elle n'implique pas de réaction chimique.

Une solution aqueuse de nanoparticules de silice, un composé facilement disponible et largement utilisé dans l'industrie, notamment comme additif alimentaire, permet de coller tous types de gels même lorsque ceux-ci n'ont pas la même consistance ou les mêmes propriétés mécaniques. Outre la rapidité et la simplicité de la mise en œuvre, l'adhésion apportée par les nanoparticules est forte, la jonction résistant souvent mieux à la déformation que le gel lui-même. En outre, l'adhésion offre une très bonne résistance à l'immersion dans l'eau. Elle est aussi autoréparable : ainsi deux morceaux décollés peuvent être recollés et repositionnés sans ajout de nanoparticules. Les nanoparticules de silice ne sont pas les seules ayant ces propriétés. Les chercheurs sont parvenus à des résultats similaires en utilisant des nanocristaux de cellulose et des nanotubes de carbone.
Enfin, pour illustrer le potentiel de cette découverte dans le domaine des tissus biologiques, les chercheurs ont recollé efficacement deux morceaux de foie de veau préalablement coupés au scalpel en utilisant une solution de nanoparticules de silice.
 
Cette découverte ouvre de nouveaux champs de recherches et d'applications, notamment dans le domaine médical et vétérinaire, et en particulier en chirurgie et en médecine régénératrice. Il est par exemple envisageable de recoller par cette méthode la peau ou des organes ayant subi une incision ou une lésion profonde. Cette méthode pourrait en outre intéresser les industries agroalimentaires, cosmétiques et les fabricants de prothèses et de dispositifs médicaux (pansements, patchs, hydrogels…).

 

DOCUMENT               CNRS                LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon