ecole de musique piano
     
menu
 
 
 
 
 
 

MACHINES ET MOTEURS MOLÉCULAIRES

 

Transcription de la 613e conférence de l'Université de tous les savoirs donnée le 20 juin 2006 revue par l'auteur.


Jean Pierre Sauvage : « Machine et moteurs moléculaires : de la biologie aux molécules de synthèse »

De nombreux processus biologiques essentiels font intervenir des moteurs moléculaires naturels. Ces moteurs sont constitués de protéines dont la mise en mouvement, le plus souvent déclenchée par l'hydrolyse d'ATP (le « fuel » biologique), correspond à une fonction précise et importante. Parmi les exemples les plus spectaculaires, nous pouvons citer l'ATPsynthase, véritable moteur rotatif responsable de la fabrication de l'ATP. Pour le chimiste de synthèse, l'élaboration de molécules totalement artificielles, dont le comportement rappelle celui des systèmes biologiques, est un défi formidable.
L'élaboration de « machines » et « moteurs » moléculaires de synthèse représente un domaine particulièrement actif, qui a vu le jour il y a environ une douzaine d'années. Ces machines sont des objets nanométriques pour lesquels il est possible de mettre en mouvement une partie du composé ou de l'assemblée moléculaire considérée, par l'intervention d'un signal envoyé de l'extérieur, alors que d'autres parties sont immobiles. Si une source d'énergie alimente le système de manière continue, et qu'un mouvement périodique en résulte, l'assemblée moléculaire en mouvement pourra être considérée comme un « moteur ». D'ores et déjà, certaines équipes de chimistes ont pu fabriquer des moteurs rotatifs minuscules, des moteurs linéaires mis en mouvement par un signal électronique ou des « muscles » moléculaires de synthèse, capables de se contracter ou de s'allonger sous l'action d'un stimulus externe.
Quelques exemples représentatifs seront discutés et un certain nombre de questions ayant trait aux applications potentielles du domaine de « nanomécanique moléculaire » seront abordées.
Qu'entend-on par machine et moteur moléculaires ? Et quels sont les systèmes naturels étudiés ?
Une machine moléculaire est un système dynamique comportant plusieurs constituants et capable de subir des mouvements réversibles de grande amplitude. Ces mouvements sont contrôlés par un signal extérieur (le signal peut être photonique, électronique ou chimique).
Il existe 3 catégories de machines moléculaires :
-les protéines moteurs (en biologie): ce sont des moteurs rotatifs, comme l'ATPsynthase ou les flagelles des bactéries qui permettent leur locomotion, des moteurs linéaires (les muscles, la kinésine ou la dynéine), ou encore des presses, comme la famille des chaperons (les chaperons sont capables d'encapsuler et de comprimer des protéines dénaturées pour leur redonner la bonne conformation).
-les systèmes hybrides : ce sont des systèmes développés par des biologistes, souvent en association avec des chimistes et des ingénieurs, comportant des fragments naturels et éventuellement des éléments artificiels issus de la chimie de synthèse.
-les molécules ou assemblées moléculaires totalement artificielles : c'est ce à quoi nous nous intéresserons plus particulièrement.
Détaillons un exemple de moteur moléculaire (de la catégorie des protéines moteurs), l'ATPsynthase schématisée figure 1. L'ATPsynthase est une enzyme universelle (nous pouvons la trouver chez les bactéries les plus primitives ainsi que chez les mammifères : elle est présente dans tous les organismes vivants). Elle est responsable de la fabrication de l'ATP (Adénosine TriPhosphate) à partir d'ADP (Adénosine DiPhosphate) et de phosphate inorganique. L'ATP représente un véritable « fuel » biologique qui permet le stockage énergétique dans la cellule (nous fabriquons chaque jour la moitié de notre poids en ATP !).
Figure 1 : l'ATPsynthase est un moteur rotatif merveilleux
Figure 2 : la rotation du rotor g à l'intérieur de la roue
a3b3 a été mise en évidence en attachant un
filament d'actine à une extrémité et en alimentant
le système en ATP
Lorsqu'une solution d'ATP est ajoutée, le groupe japonais a pu remarquer que le filament d'actine (qui a été modifié de telle façon à être rendu luminescent) tourne dans le sens inverse des aiguilles d'une montre : l'ATPsynthase a agi comme un moteur rotatif réalisant l'hydrolyse de l'ATP en ADP et en phosphate inorganique, c'est à dire la réaction inverse de celle produisant l'ATP.
Ce groupe a donc mis en évidence que nous avons un « fuel », l'ATP, dont la conversion
engendre un mouvement de rotation pour un moteur moléculaire très complexe issu de la
biologie, mais qui peut être classé comme un moteur hybride.
Il existe d'autres protéines moteurs qui sont des moteurs linéaires :
-la kinésine et la dynéine : elles sont responsables du transport de la matière dans les cellules, dans des organelles (sortes de « sacs » présents sur la kinésine). La kinésine bouge très vite (300-400 km/h si l'on ramène l'échelle à celle d'une personne courant sur une piste de stade).
-les muscles striés : ils se contractent ou s'allongent grâce à des filaments (actine : filament fin / myosine : filament épais) qui coulissent les uns le long des autres.
Les molécules de synthèse
De manière générale, l'élaboration de molécules artificielles a beaucoup évolué. Il reste cependant des défis inaccessibles aujourd'hui.
Certaines substances naturelles très complexes peuvent être synthétisées au laboratoire, comme la brévétoxine A (figure 3). Cette molécule présente un grand nombre de carbones asymétriques (22). Elle a été préparée par un groupe américain et a nécessité le travail de 20 personnes sur une période d'environ 12 ans. Cette synthèse représente un véritable tour de force, salué par la communauté des chimistes des molécules.
Figure 3 : le groupe américain de K.C. Nicolaou a réalisé la synthèse totale
de la brévétoxine A
Mais pour le moment, aucune équipe n'est parvenue à synthétiser la maitotoxine (figure 4), substance naturelle comprenant environ une centaine de carbones asymétriques.
Figure 4 : la maitotoxine, un des poisons marins les plus violents, n'a pas encore pu être synthétisée au laboratoire
Les moteurs et machines moléculaires artificiels : caténanes et rotaxanes
Les caténanes et les rotaxanes (figure 5) sont devenus très populaires dans le domaine de la recherche contemporaine (véritable révolution au cours des 20 dernières années) et sont beaucoup étudiés par les chimistes, les physiciens et les ingénieurs pour leur potentiel dans la fabrication de machines moléculaires.
Figure 5 : schéma d'un [2]caténane et d'un [2]rotaxane
Jusqu'au début des années 1980, ces composés semblaient inaccessibles car il n'existait pas de méthode de synthèse, puis une méthode a été découverte (figure 6) : elle met en Suvre l'effet de matrice d'un métal de transition, le cuivre (I), afin d'entremêler 2 fils moléculaires par exemple pour obtenir un précurseur qui permettra ensuite de fabriquer un [2]caténane.
Figure 6 : stratégie pour entremêler 2 fragments moléculaires afin de préparer un [2]caténane
Sur la figure 6, nous avons 2 fragments moléculaires f-f capables d'interagir avec un centre métallique (cation métallique susceptible de rassembler et d'orienter ces 2 fragments). Nous obtenons alors un intermédiaire, comportant deux fils f-f entremêlés, conduisant au [2]caténane par une réaction chimique classique de formation d'anneau.
Traitons un exemple concret pour illustrer cette stratégie : la formation d'un entrelacs de 2 fils moléculaires dppOH (dihydroxyphénylphénanthroline) grâce au cation métallique Cu (I) (figure 7), entrelacs réalisé par Dietrich-Buchecker et al., en 1984.
Figure 7 : réalisation d'un entrelacs de 2 fragments organiques grâce à
l'effet de matrice du cuivre (I)
Le cuivre existe sous 2 états :
-un état oxydé : c'est le cuivre (II) ou Cu2+
-un état réduit : c'est le cuivre (I) ou Cu+.
C'est le cuivre dans son état réduit qui a été utilisé ici et qui est toujours utilisé pour réaliser un entrelacs de ce type.
Une fois l'entrelacs effectué, une réaction de chimie classique est mise en Suvre afin de synthétiser le [2]caténane (figure 8).

Figure 8 : formation du [2]caténane par une réaction chimique classique
Figure 9 : structure cristallographique du
[2]caténane complexé au cuivre
Les deux anneaux étant entrelacés, la seule manière de les séparer est de couper un lien chimique. Il est possible de retirer le cuivre (I) en réalisant ce qu'on appelle la démétallation (figure 10).
Figure 10 : il est facile de retirer le centre métallique en utilisant du cyanure de potassium
Figure 11 : la molécule se réarrange
pendant la démétallation
La première machine moléculaire à partir d'un caténane :
La première machine moléculaire réalisée à partir d'un [2]caténane est un moteur rotatif dont le mouvement est déclenché par l'oxydation et la réduction du cuivre (figure 12). Il faut cependant noter que ce n'est pas un véritable moteur rotatif, dans la mesure où la direction des deux demi-tours représentés sur la figure 12 n'est pas contrôlée.
Figure 12 : rotation d'un anneau à l'intérieur d'un autre anneau, sans contrôle de la
direction : utilisation du couple Cu(II) / Cu(I)
Le cuivre (I) est stable lorsqu'il est entouré de 4 atomes donneurs (atomes d'azote) : il présente une géométrie pseudo-tétraédrique lors de la coordination à deux phénanthrolines (chacune a 2 atomes d'azote).
Le cuivre (II) n'est lui par contre pas stable en pseudo-tétraèdre, il préfère être entouré de 5
atomes donneurs : une phénanthroline et une terpyridine (respectivement 2 et 3 atomes
d'azote).
Lorsque le cuivre (I) est oxydé (-e-) en cuivre (II), nous passons d'une situation stable (en haut à gauche) à une situation instable (en haut à droite). Le système instable va évoluer (se relaxer) et la relaxation implique qu'un des deux anneaux tourne à l'intérieur de l'autre anneau. Ceci s'effectue de manière à venir placer le fragment à 3 azotes (terpyridine) en position d'interaction avec le cuivre : le système retrouve alors une situation stable (en bas à droite). Ce réarrangement a été réalisé en effectuant une rotation d'un demi-tour.
Le système est réversible, ce qui signifie qu'il est possible de réduire (+e-) le cuivre (II) en cuivre (I) pour revenir à la situation de départ (en haut à gauche), en passant par un système instable (en bas à gauche).
Ce moteur rotatif est donc fondé sur un mouvement contrôlé par électrochimie et le système est parfaitement réversible : il est possible de faire autant de cycles CuI à CuII à CuI que l'on veut.
Une navette moléculaire à partir d'un rotaxane :
Nous avons vu qu'un rotaxane pouvait être un moteur rotatif ou un moteur linéaire. Le groupe de Fraser Stoddart, aux Etats-Unis, a préparé une navette moléculaire (figure 13) à partir d'un rotaxane, c'est un moteur linéaire.
Figure 13 : schématisation d'une navette moléculaire
C'est un processus électronique qui permet de faire coulisser l'anneau d'une station vers l'autre (figure 14).
Figure 14 : une « navette » moléculaire :la mise en mouvement se fait en
oxydant la station verte puis en réduisant sa forme oxydée
Ce processus est réversible puisqu'il est possible de revenir à la situation de départ en réduisant la station verte, c'est à dire en revenant à sa forme neutre du point de vue des charges.
Cette navette moléculaire et des molécules dérivées de sa structure originelle ont conduit à des applications qui peuvent être importantes : des chimistes se sont associés à des ingénieurs et à des physiciens pour tenter de fabriquer des systèmes de stockage d'information (mémoires) et des ordinateurs primitifs à base moléculaire.
Peut-on mettre en Suvre un système de stockage de l'information moléculaire en utilisant une navette moléculaire ?
Figure 15 : découverte de l'année 2001, publiée dans le magazine Science, vol. 294, 21
décembre 2001, p. 2442 : nous dirigeons-nous vers des ordinateurs moléculaires ?
Le système qui a été élu « découverte de l'année 2001 » par le magazine Science (figure 15) pourrait donner naissance à un ordinateur moléculaire, permettant le stockage de l'information.
Ce dispositif est composé de barreaux de semi-conducteur ou d'un métal conducteur : 3 barreaux en haut et 3 barreaux en bas, positionnés de manière orthogonale. Entre ces barreaux ont été intercalées des molécules de la navette moléculaire. Lorsqu'un potentiel est appliqué entre deux barreaux perpendiculaires, la position de l'anneau (représenté en blanc sur la figure) peut être contrôlée. Dans le même temps, les propriétés de conduction de l'électricité du filament organique sont modifiées. Ainsi, selon la position de l'anneau sur le filament organique, nous avons un conducteur (qui peut être considéré comme le 1 d'un système informatique) ou un isolant (qui est alors le 0). L'état du fil organique reliant les barreaux peut être « lu ». Il est également possible d' « effacer » afin de revenir à l'état initial.
Nous avons donc un système permettant le stockage de l'information, à base moléculaire. Il faut cependant noter que ce petit dispositif fait encore l'objet de nombreuses discussions et débats.
Vers des muscles moléculaires de synthèse à l'échelle nanométrique :
Il est possible de mimer les moteurs linéaires que sont les muscles. Cela a été réalisé par Maria Consuelo Jiménez et Christiane Dietrich-Buchecker qui ont cherché à imiter le fonctionnement du muscle strié en préparant un dimère de rotaxane (figure 16). Dans ce dimère de rotaxane, les filaments vont pouvoir coulisser l'un sur l'autre pour conduire à une forme contractée ou à une forme étirée.
Figure 16 : un dimère de rotaxane est la topologie idéale pour réaliser l'interconversion d'une structure étirée et d'un système contracté. L'axe d'une sous-unité (bleue, par exemple) traverse l'anneau de l'autre sous-unité (noire)
La synthèse du muscle est un réel défi, proche du point de vue de la difficulté, de celui que peut représenter la synthèse de produits naturels complexes. C'est la coordination au métal qui détermine le fait qu'il soit étiré ou contracté. L'étape clé de la préparation du muscle est la réaction de double « enfilage » (figure 17). La structure doublement entrelacée de ce composé a été mise en évidence par diffraction des rayons X (figure 18).
Figure 17 : formation du dimère de rotaxane par double enfilage au cuivre (I)
Figure 18 : structure cristallographique du 
composé doublement entrelacé
La mise en mouvement du muscle est réalisée par une réaction d'échange cuivre (I) / zinc (II) (figure 19).
Comme nous l'avons vu précédemment, le cuivre (I) est stable lorsqu'il est tétracoordiné : sa sphère de coordination est composée de 2 phénanthrolines, c'est la forme étirée (85 Angström). Le mouvement est induit par échange du cuivre (I) par du zinc (II) qui, lui, est stable lorsqu'il est pentacoordiné (géométrie de bipyramide trigonale) : sa sphère de coordination comprend une phénanthroline et une terpyridine, c'est la forme contractée (65 Angström).
L'amplitude est à peu près la même que celle que nous trouvons dans les muscles striés (myosine / actine) : la contraction est d'environ 25 % de la longueur totale de l'objet dans la forme étirée.
Figure 19 : les deux états du muscle
Il est donc possible de contracter ou d'étirer une molécule par une réaction chimique, de manière très substantielle. La mise en mouvement d'objets ou de particules beaucoup plus grands que cette espèce suscite actuellement beaucoup d'intérêt.
Les moteurs et machines moléculaires fondés sur des molécules non entrelacées : un exemple de système mis en mouvement par la lumière
Plusieurs machines moléculaires ont été proposées par différents laboratoires, qui travaillent sur des composés qui ne comportent pas d'anneaux entrelacés. Nous discuterons brièvement un exemple précis, conduisant à un véritable dispositif micrométrique.
Un groupe de chercheurs hollandais (Feringa et al.) a publié en 2006, dans la revue Nature, un article à propos d'un nanomoteur qui engendre la rotation d'objets de l'ordre du micron. Il s'agit en fait d'un moteur moléculaire intégré dans un film de cristal liquide (figure 20) qui utilise la lumière pour faire tourner des objets de grande taille, par comparaison à celle du moteur moléculaire lui-même.
Figure 20
Le groupe de Feringa a déposé un barreau de verre (5x28mm) sur ce film de cristal liquide dopé. Sous irradiation lumineuse, le petit barreau est entraîné et il est possible de visualiser clairement la rotation, ce qui constitue une très jolie preuve de principe.
Finalement, quelles sont les motivations des chercheurs travaillant dans le domaine des machines et moteurs moléculaires de synthèse ?
Tout d'abord, la fabrication de tels objets, molécules ou dispositifs, représente un véritable défi synthétique : les molécules pouvant donner naissance à un moteur ou à une machine moléculaire sont complexes et originales. Leur synthèse nécessite beaucoup de temps et de talent. Leur obtention représente un véritable exploit, que ce soit au niveau conceptuel ou du point de vue expérimental.
Ensuite, c'est la possibilité de reproduire les fonctions les plus simples des moteurs biologiques qui attire les chercheurs. Il faut cependant noter que les machines moléculaires accessibles aujourd'hui sont extrêmement primitives, comparées aux machines naturelles très complexes mises au point par la nature au cours de l'évolution.
Pour finir, ce sont certainement les nombreux domaines d'applications possibles qui captivent également les chercheurs :
-le stockage et le traitement de l'information au niveau moléculaire (écrire / lire / effacer)
-la mise au point de robots microscopiques capables d'assurer des fonctions variées
-en chimie médicinale : le transport d'une molécule jusqu'à un endroit précis ou celle-ci sera utile (médicament), l'ouverture / la fermeture d'une valve ou d'une porte qui contrôle le flux d'une molécule dans un fluide biologique, le pilotage d'une micro-seringue susceptible d'injecter un composé dans une cellule...

 

VIDEO                  CANAL  U                LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

PRÉFÉRENCE MANUELLE ET LANGAGE ...

 

Paris, 30 juin 2014


Préférence manuelle et langage : existe-t-il vraiment un hémisphère dominant ?


Les chercheurs du Groupe d'imagerie neurofonctionnelle (CNRS/CEA/Université de Bordeaux) ont démontré, avec une approche novatrice basée sur l'exploitation d'une grande base de données psychométriques et d'imagerie cérébrale, que la localisation des aires du langage dans le cerveau est indépendante du fait d'être droitier ou gaucher, sauf pour une très faible fraction de gauchers dont l'hémisphère droit est dominant à la fois pour les activités manuelles et pour le langage. Leur étude est publiée dans Plos One le 30 juin 2014.
L'espèce humaine est la seule chez laquelle on observe une asymétrie du comportement moteur fortement majoritaire : 90% de la population utilise préférentiellement la main droite et 10% la main gauche. Ce comportement moteur est dit « croisé » : si on utilise la main droite, c'est l'hémisphère cérébral gauche, alors considéré comme dominant, qui est activé. Le langage, avec le comportement moteur, est une des fonctions les plus latéralisées du corps humain : en fonction des personnes, les réseaux d'aires cérébrales contrôlant la parole sont situés préférentiellement dans l'hémisphère gauche ou dans l'hémisphère droit du cerveau. De nombreuses études ont montré que l'hémisphère gauche, comme pour le comportement moteur, est dominant pour le langage dans 90% des cas.
Les 10% de gauchers de la population correspondent-ils au 10% des individus dont le langage est situé dans l'hémisphère droit du cerveau ? La localisation des aires du langage dans le cerveau est-elle alors corrélée au fait d'être droitier ou gaucher ? Pour répondre à cette question, les chercheurs du Groupe d'imagerie neurofonctionnelle ont tout d'abord recruté un large échantillon de participants (297) très fortement enrichi en gauchers (153). Alors que la plupart des autres études ne concernent que des droitiers (majoritaires dans la population) les chercheurs ont analysé, pour la première fois, la latéralisation du langage chez un grand nombre de droitiers et de gauchers. Les sujets de cet échantillon ont ensuite subi une IRM fonctionnelle alors qu'ils effectuaient des tests de langage. Trois types de latéralisation pour le langage ont ainsi été révélés à partir des images  obtenues (voir figure 1) : « typique » avec un hémisphère gauche dominant (présent chez 88% des droitiers et 78% des gauchers), « ambilatéral » sans hémisphère clairement dominant (présent chez 12% des droitiers et 15% des gauchers), « très atypique » avec un hémisphère droit dominant (présent uniquement chez 7% des gauchers). L'analyse statistique de cette distribution montre que la concordance entre l'hémisphère dominant pour les activités manuelles et celui pour le langage se fait au hasard, sauf pour une petite fraction de la population (moins de 1%) pour laquelle l'hémisphère droit est dominant à la fois pour le langage et pour la main.
Ces résultats montrent donc qu'il n'est pas possible de déterminer l'hémisphère dominant pour le langage en connaissant seulement la préférence manuelle d'un individu. Les chercheurs vont maintenant tenter de comprendre pourquoi seul un petit groupe de gauchers possède un hémisphère droit dominant pour le langage, en déterminant en particulier s'il existe des variants géniques qui expliqueraient ce phénomène. Ces résultats démontrent également qu'un échantillon enrichi en gauchers, composé à partir d'une grande base de données, permet, à la différence d'un échantillon essentiellement constitué de droitiers, de mettre en évidence des facteurs de variabilité des bases structurales et fonctionnelles du cerveau humain : la détermination de ces sources de variabilité dans la latéralisation du langage ouvre la voie vers une meilleure compréhension des pathologies du langage.

 

DOCUMENT              CNRS               LIEN

 
 
 
 

CONTAMINATION AU MERCURE

 

Paris, 2 AVRIL 2014


Les oiseaux de l'Antarctique menacés par la contamination au mercure


La contamination au mercure des terres australes a des effets sur les populations d'oiseaux. C'est ce que révèlent les travaux de chercheurs du Centre d'études biologiques de Chizé et du laboratoire « Littoral, environnement et sociétés » (CNRS / Université de La Rochelle). En suivant des skuas en Terre Adélie et aux îles Kerguelen pendant 10 ans, les chercheurs montrent que, lorsque ces oiseaux marins présentent des taux de mercure élevés dans leur sang, leur succès reproducteur diminue. C'est la première fois que des mesures toxicologiques sont couplées à une enquête démographique menée sur une période aussi longue dans les terres australes. Ces résultats, publiés dans la revue Ecology en avril 2014, montrent que les polluants qui s'accumulent au niveau des pôles peuvent bel et bien mener à un déclin des populations d'oiseaux.
Une partie du mercure issu des activités industrielles et domestiques (combustion d'hydrocarbures et de charbon), est balayée par les vents vers l'Arctique et l'Antarctique. Ce mercure d'origine anthropique s'ajoute à celui d'origine naturelle et rentre dans la chaîne alimentaire. Or ce métal lourd est un puissant perturbateur endocrinien, capable d'inhiber la production d'hormones nécessaires à la reproduction. En zone polaire, on savait que de nombreux oiseaux marins tels que les skuas accumulent cet élément toxique à des concentrations élevées dans leurs tissus. Cependant, les effets à long terme sur leurs effectifs n'étaient pas connus.

Pour la première fois, les chercheurs ont réalisé un suivi démographique sur une période de dix ans sur deux espèces d'oiseaux marins : les skuas vivant sur les îles Kerguelen (zone subantarctique) et ceux peuplant la Terre Adélie (en Antarctique). Les skuas sont des oiseaux migrateurs qui se nourrissent essentiellement d'œufs et de poussins de manchots, ainsi que de poissons. Prédateurs redoutables qui vivent 25 ou 30 ans, les skuas accumulent du mercure dans leurs tissus.

Les chercheurs ont tout d'abord capturé une centaine de skuas antarctiques et subantarctiques. Après une prise de sang pour mesurer leur taux de mercure, ils les ont bagués et relâchés. Pendant dix ans, les chercheurs sont revenus sur leur site de ponte pour observer leur succès reproducteur. Les skuas peuvent élever un ou deux poussins par an.

Première constatation, les skuas subantarctiques présentent des concentrations de mercure trois fois plus élevées que celles de l'espèce antarctique. Les chercheurs ont montré chez les deux espèces que, plus le taux de mercure est élevé, moins les oiseaux ont des chances de se reproduire avec succès et en particulier d'élever leur(s) poussins. De façon inattendue, c'est chez l'espèce la moins contaminée, le skua antarctique, que les effets de ce métal lourd sont les plus prononcés. Il est possible qu'en Terre Adélie, les conditions environnementales plus sévères, couplées à la présence croissantes d'autres polluants (pesticides, PCB), amplifient l'impact de la contamination par le mercure.

Ces résultats prouvent que les polluants qui s'accumulent dans les zones polaires constituent une véritable menace pour la biodiversité. Les modélisations des chercheurs montrent que si la contamination au mercure continue d'augmenter, les populations de skuas pourraient à long terme décliner. Les chercheurs appellent à mener d'autres enquêtes toxicologiques et démographiques pour d'autres espèces australes. Ils conduisent d'ailleurs des études similaires pour mesurer les effets sur les populations d'oiseaux de polluants « classiques », tels que les pesticides et d'autres métaux lourds, ainsi que de molécules nouvelles comme les composés perfluorés qui s'accumulent également en Antarctique.

 

DOCUMENT             CNRS               LIEN

 
 
 
 

L'IDENTITÉ GÉNÉTIQUE

 

Texte de la 4ème conférence de l'Université de tous les savoirs réalisée le 4 janvier 2000 par Antoine Danchin


L'identité génétique


Il y a 3000 ans en Grèce, les gens interrogeaient loracle de Delphes, la Pythie, sur leur avenir. Elle leur répondait par des questions énigmatiques. Lune delles était la suivante : Jai une barque faite de planches et les planches susent une à une. Au bout dun certain temps, toutes les planches ont été changées. Est-ce la même barque ? Clairement, le propriétaire répond oui, avec raison : quelque chose, ce qui fait que la barque flotte, sest conservé, bien que la matière de la barque ne soit pas conservée. Puisque toutes les planches ont été changées et que la nature même du bois peut avoir été différente, il y a dans la barque plus que sa simple matière.
Pourquoi choisir cette image, cette question pour parler de la vie ? Il est essentiel de concevoir le vivant et la biologie comme une science des relations entre objets plus quune science des objets. Il sagit de découvrir la forme de ces relations : connaître simplement les objets, disséquer lanimal, ne suffit pas si lon na pas compris les relations entre les objets.
Un ensemble de relations entre objets, cest une propriété abstraite, comme le plan de la barque est abstrait par rapport aux planches qui la composent. Pour comprendre la biologie, il faudra donc un effort dabstraction et considérer d'abord un certain nombre de processus et de lois.
Les processus qui font que les organismes vivent sont au nombre de quatre. Le premier est le métabolisme. Il ny a pas dorganismes vivants dans lesquels il ny ait transformation dobjets en dautres objets, essentiellement des petites molécules ou de plus grosses molécules, transformées les unes dans les autres. Bien quil existe un état quon puisse appeler la dormance, entre la vie et la mort - cest létat de la graine ou létat de la spore du champignon ou de la bactérie - on ne pourra définir lorganisme comme vivant quau moment où son métabolisme se sera réveillé, où l'on aura vu ces changements dobjets les uns dans les autres. Cest la nature même du métabolisme de créer des relations et de les manipuler.
La deuxième caractéristique des organismes vivants est la compartimentation. Lélément de base de la vie, la cellule, est faite dun intérieur et dun extérieur. La vie a deux stratégies dorganisation de la compartimentation : ou bien on a des cellules uniques avec une enveloppe plus ou moins compliquée, qui doivent vivre dans un environnement extrêmement varié auquel elles doivent rapidement sadapter ce qui correspond à la plupart des microbes que nous connaissons. La deuxième stratégie, cest au contraire de multiplier les membranes et les peaux, jusquà nos vêtements, pour isoler autant que possible le milieu intérieur du milieu extérieur.
A ces deux stratégies de compartimentation sont associées des stratégies de mise en mémoire de quelque chose qui va se transmettre de génération en génération et qui va exprimer la règle de construction des organismes vivants: le génome. Le support physique du génome est formé dune famille de molécules constituées de motifs chimiques de base simples : seulement quatre types différents, enchaînés à la suite comme les lettres de lalphabet sont enchaînées pour construire les phrases d'un livre.
On peut décrire une partie majeure de ce qui fait la vie des organismes par un processus de mémoire qui est la transmission dun premier texte, celui du génome d'une part, et d'autre part la traduction de ce texte en un autre, destiné à mettre en Suvre concrètement le contenu du premier. Le fait davoir le texte du génome, puis ensuite un second texte, ouvre des possibilités extraordinaires à la vie. Ce premier texte est fait dune classe de molécules, les acides nucléiques d'où le nom de l'acronyme ADN, pour "Acide DésoxyriboNucléique", formé de quatre motifs de base enchaînés les uns à la suite des autres. Mais ce texte est un texte de recettes, qui ne suffit pas, seul, à faire fonctionner un organisme vivant. Il faut mettre en Suvre la recette. Un deuxième type dobjets dans les organismes vivants, les protéines, correspond aussi à l'enchaînement déléments de base, mais, cette fois-ci, ces éléments sont au nombre de vingt : les acides aminés. Il existe une correspondance entre cette mémoire, les acides nucléiques, et ces objets, les protéines, qui servent à la construction architecturale des cellules, à la manipulation de toutes les règles de contrôle ou aux règles du métabolisme.
Ces quatre processus (métabolisme, compartimentation, mémoire et manipulation) doivent obligatoirement fonctionner ensemble pour construire un organisme vivant. Si l'on choisit ces éléments comme nécessaires à la définition de la vie, les virus, par exemple, ne sont pas des organismes vivants : ils ont la propriété de mémoire, de compartimentation, quils acquièrent de la cellule-hôte, mais ils sont incapables de métabolisme et de manipulation. Les virus sont donc des parasites de mémoire purs. La même image de parasites purs de la mémoire est apparue en science des calculateurs électroniques où l'on a des morceaux de programmes qui se promènent dans les ordinateurs et peuvent avoir comme propriété de se répandre en se multipliant eux-mêmes, si possible à lidentique, et en se propageant. Une nouvelle idée apparaît ici, liée à cette idée de mémoire, celle de programme.
A ces quatre processus sajoutent deux lois. Une première loi permet de conserver la mémoire. Cette mémoire est sous forme de son support matériel, double ; elle est faite de deux éléments complémentaires, comme le sont le positif et le négatif photographique, l'un contre lautre, qui permettent, lorsquon les sépare, de reconstituer entièrement l'un à partir de lautre. Wilkins, Watson et Crick ont découvert en 1953 la structure de lacide désoxyribonucléique, une double hélice formé de deux brins complémentaires, ce qui a permis de comprendre comment on pouvait conserver à lidentique un enchaînement de motifs chimiques au cours des générations. On a ici une règle de complémentarité, la première loi de la génétique, qui permet de spécifier entièrement un morceau de texte par lautre texte et cela de façon symétrique.
Cette première loi explique la transmission de l'hérédité au cours des générations, mais la deuxième, beaucoup plus importante et plus abstraite, explique les propriétés innovantes des organismes vivants. Il faut en effet passer de la mémoire à la manipulation, des acides nucléiques aux protéines. Il y a là un processus de traduction. Un premier texte, écrit dans un alphabet à quatre lettres, avec une langue dun certain type fondée sur une chimie spéciale, passe à des morceaux de texte écrits dans un alphabet à vingt lettres, fondée sur une chimie totalement différente. La règle de passage de lun à lautre sappelle le code génétique. Il faut ici une mise en garde. Les journaux affirment souvent : On va déchiffrer le code génétique de tel ou tel organisme. Mais il s'agit là d'une erreur. Le code génétique, cest la même chose que le code quutilisent les enfants pour leurs messages secrets, une règle pour transposer un texte en un autre texte. Il ne s'agit pas du programme de construction des organismes, du programme génétique. Ce code génétique est universel, identique des bactéries à lhomme, ce qui fait qu'on peut prendre des morceaux de mémoire, de programme venant de lhomme, par exemple, et le mettre dans une bactérie et faire produire des protéines humaines par des bactéries. Ce code, cette règle de correspondance entre un niveau et un autre, cest ce que les services secrets appellent le chiffre ou cipher en anglais.
La transposition dun niveau à lautre par un code est originale : lorsquon peut transposer un texte dune langue dans une autre, et lautre étant à la tête dobjets manipulateurs, ces objets peuvent évidemment manipuler le texte de départ. Cela crée une boucle particulière qui permet, par le texte lui-même, de spécifier ce quil reproduira. Le texte peut faire appel à soi-même pour pouvoir engendrer sa descendance. Il peut aussi, comme le font les programmes dordinateur, spécifier tel ou tel type de manipulation dans des environnements variés. Ce fait davoir deux niveaux qui se correspondent à travers un code a une conséquence originale : un système de ce genre peut être parfaitement déterminé, déterministe, et cependant parfaitement imprévisible. Cest surprenant parce que nous avons encore limage des horloges du XVIIIe siècle où lon peut, connaissant létat initial du système, savoir où sera laiguille dans un certain temps, si on connaît la mécanique. Or, les organismes vivants sont ces systèmes matériels qui, en face dun avenir imprévisible, sont construits pour construire de limprévu. Cest fondamental, et cela se manifeste sans avoir besoin de renoncer au déterminisme : on na pas besoin dimaginer pour que se produise de l'imprévu, que le système ait une grande sensibilité à des conditions initiales ou des chose de ce genre. En fait, lidée même davoir une mémoire, l'aptitude à la manipulation et un code entre les deux permet ce genre de propriétés remarquables.
Une première fonction biologique est celle quon appelle la réplication, elle applique la loi de complémentarité : à chacune des quatre lettres du premier texte correspondent quatre lettres du deuxième texte. Cest une règle qui recopie un texte, sans se soucier du contenu sémantique, du sens de ce qui est recopié : on peut fabriquer nimporte quel morceau dADN, ajouter de lADN artificiel, il sera recopié tel quel.
La deuxième fonction, qui correspond au code génétique, se déroule en deux étapes : un premier recopiage dun texte écrit avec un alphabet à quatre lettres dans un autre alphabet à quatre lettres légèrement différent, puis passage à lalphabet à vingt lettres des protéines. Là se fait le changement qui permet, à partir du texte du programme, de fabriquer des objets manipulateurs qui vont manipuler le programme lui-même.
Dans ce type de situation, avec cet ensemble de règles, donc quatre processus et deux lois, dont la loi du code génétique, comment les organismes vivants vont-ils vivre, exister, évoluer ? Il existe en biologie un concept central lié à lidée de relation entre objets, cest le concept de fonction, que vous trouvez peu ou pas en chimie ou en physique. Lorsquon parle dun objet biologique, on sinterroge immédiatement sur sa fonction. Cet objet existe, va réaliser une action, dirigée dans une certaine orientation avec lapparence dun but, dune finalité. Tous les organismes vivants et les objets du vivant sont placés dans un contexte dans lequel, au sein de procédés particuliers de leur expression, de leurs actions, il y a une orientation vers une apparence de but.
On pourrait penser quil y a une vision extérieure à la vie qui lui impose une orientation et un but particulier; et que les organismes vivants sont des systèmes matériels dirigés par lextérieur vers une certaine finalité. Cela a été dit par un grand nombre de pensées religieuses, par exemple, avec une logique interne tout à fait compréhensible. Mais ce nest pas nécessaire ; en réalité, la façon dont les organismes vivants procèdent pour se créer des buts et capturer les objets qui vont permettre davoir les fonctions satisfaisant à ces buts est particulière. Elle a été résumée par François Jacob sous le nom de bricolage . Cest une aptitude à lopportunisme, à faire feu de tout bois, qui fait que les organismes vivants évoluent systématiquement en découvrant, à partir de ce dont ils disposent (puisquils ne peuvent pas créer quelque chose dont ils ne disposent pas), des fonctions nouvelles. Ce qui est particulier dans la vie, cest dêtre capable, à partir de nimporte quoi, de créer des fonctions nouvelles.
Une métaphore permet dillustrer les découvertes récentes et fascinantes sur les fonctions des organismes vivants. Cest lété. Je suis assis à mon bureau. Mon bureau est couvert de papiers. La fenêtre est ouverte derrière moi et je lis un livre. Tout dun coup, le vent se lève. Si les papiers senvolent et se mélangent, ce serait une catastrophe pour moi. Donc, je prends le livre et je le pose sur les papiers. Ce livre vient de découvrir une nouvelle fonction, différente de celle quil avait quand jétais en train de le lire : il est, parce quil est un parallélépipède lourd, un presse-papier. De la même manière, les structures des objets biologiques sont capturées au cours du temps, de façon systématique. Ce qui veut dire dailleurs que, si je découvre le livre et que je dis : Ceci est un livre , je peux me tromper parce que, dans ce contexte particulier, ce nest pas un livre mais un presse-papier. On parle en ce moment des programmes de séquençage de génomes, par exemple, où l'on vous dit quon va avoir des morceaux de texte génomique, dont on va identifier la fonction : Ceci correspond à telle séquence , et l'on dira la fonction. Il s'agit là d'une erreur, liée à lillusion que connaître une collection d'objets suffit à comprendre la biologie.
En fait, les organismes vivants évoluent de la façon suivante. Ce sont des systèmes matériels qui, parce que nous sommes à la température de surface de la Terre, sont soumis aux contraintes thermiques : à cause de ces contraintes, aucun procédé physico-chimique ne peut donner une reproduction strictement identique de ce quil était. Il y a donc des variations au cours de la réplication. Lorsque les organismes vivants produisent de nouveaux organismes vivants qui leur ressemblent, ces nouveaux organismes ne sont pas strictement identiques à lorganisme de départ. Ils sont par ailleurs soumis à des environnements qui, eux, vont choisir, parmi ces variants, certains dentre eux. Cest la sélection, mais cette sélection est un tri passif et non un mécanisme actif. Ce nest pas la sélection du plus apte, comme le disait Spencer, parce quil ny a pas de plus apte. Personne ne sait qui pourrait être le plus apte. Cest dans telle circonstance, à tel moment particulier, que tel organisme a pu survivre, et cest cette survie qui lui a permis dêtre sélectionné. Cest un tri passif, une simple élimination du totalement inapte.
La capacité damplification est le deuxième point fondamental chez les organismes vivants. Si vous faites une expérience de chimie ou même de physique nucléaire et que vous faites des dégâts quelque part, les dégâts sarrêtent et diffusent au cours du temps en diminuant sans cesse. Si vous faites la même chose avec des organismes vivants, ces organismes sont susceptibles de samplifier, de se multiplier, et le cas échéant daugmenter fortement les problèmes quils ont posés. C'est ce qui explique l'inquiétude spontanée du public vis à vis des organismes génétiquement modifiés. Mais il y aurait là matière à développement : le naturel est toujours beaucoup plus dangereux que lartificiel, car il est pré-adapté. Les événements liés au sang contaminé le montrent : le sang est pré-adapté à lhomme et, par conséquent, potentiellement extrêmement dangereux.
Revenons à la genèse des fonctions. Létude de la transparence du cristallin de lSil permet de comprendre comment se créent des fonctions. Le cristallin permet cela vient difficile à partir de 50 ans daccommoder et davoir une image sur la rétine de notre environnement. Cela suppose un ensemble cellulaire, le cristallin, fait de couches cellules, empilées un peu comme des pelures d'oignon, qui s'accumulent au cours de la vie. Cest la raison pour laquelle le cristallin devient de plus en plus gros et de plus en plus difficile à contracter quand on vieillit. Ces cellules ont la particularité dêtre transparentes. Lorsquon a commencé à étudier les protéines, donc ces objets manipulateurs évoqués un peu plus tôt, à lintérieur du cristallin, on sest aperçu que certaines dentre elles sont très concentrées et donc relativement faciles à purifier, à identifier. On les a appelées cristallines et on a étudié leurs propriétés physico-chimiques. On sest aperçu quelles ont la transition vitreuse : elles sont suffisamment désordonnées pour ne pas privilégier une direction particulière de la lumière. Elles se comportent exactement comme le verre.
Puis sont venus des programmes de séquençage. On a commencé par séquencer des gènes individuellement avant de séquencer les collections de gènes que représente le génome. On a commencé à regarder une de ces cristallines et on sest aperçu quon la connaissait déjà, quelle ressemblait, à sy méprendre, à quelque chose qui navait rien à voir, une enzyme, par exemple, une lactate déshydrogénase, qui a une activité métabolique particulière. On l'a mise en présence du substrat du métabolisme en question et on sest aperçu que cest une enzyme, mais qui marche dans lSil non pas avec cette fonction denzyme, mais avec la fonction : Je suis transparente quand je suis concentrée. On a aussi découvert autour de ces cristallines dautres protéines, les chaperons moléculaires . Ce sont des protéines qui jouent le rôle déchafaudage, qui permettent de remettre en forme des objets qui se sont défaits, qui ont perdu leur forme. Ils ont été appelés chaperons parce quils accompagnaient comme les chaperons les protéines quon purifiait, on les trouvait toujours associés à ces protéines. Ces chaperons moléculaires ont cette particularité de permettre la remise en forme des protéines dénaturées, ce qui a un intérêt considérable pour lSil. Au cours de lâge, nous risquons tous dêtre atteints de cataracte. LSil perd sa transparence car les cristallines, au cours du temps, se dénaturent et les chaperons moléculaires ne fonctionnent pas toujours assez bien pour les renaturer. Mais si on y réfléchit, pendant la durée dune vie humaine, un objet soumis au rayonnement que nous avons dans les yeux reçoit des quantités énormes de rayons ultraviolets qui dénaturent en permanence les protéines du cristallin : sans ces chaperons, la cataracte apparaîtrait beaucoup plus tôt. On sest aperçu quil y avait beaucoup dautres éléments que ces protéines et ces chaperons moléculaires. Or, dans un tout autre domaine, des chercheurs ont découvert que, lorsque des cellules sont soumises à un choc thermique, ce qui est fréquent, la plupart des protéines réagissent mal. Un ensemble particulier de protéines sert de remède à cette situation difficile. Au cours de lévolution, les cristallins se sont inventés une première fonction, en capturant la fonction dun ensemble de protéines, les protéines de résistance aux chocs (au choc thermique ou au choc acide, dans un très grand nombre de cas). Cet ensemble contient un certain nombre de protéines, qui sont justement les protéines quon trouve dans le cristallin, et évidemment ces chaperons moléculaires. Dans une cellule de peau, par exemple, vous avez ces protéines. Si vous vous brûlez, elles vont être mises en jeu, parce quon a un système de contrôle qui va décider immédiatement : il faut faire la synthèse de ces protéines, puis larrêter. Dans le cristallin, la perte du système de contrôle la rendu ce quon appelle constitutif, cest-à-dire quil marche en permanence. Cest donc la perte du système de contrôle qui a en permanence rempli la cellule dun certain jeu de protéines. En général, cela na pas dintérêt. Il se trouve que, pour un cristallin, cest-à-dire un organe situé au dessus d'un ensemble de cellules sensibles comme la rétine, cela a un intérêt. On voit comment au cours de lévolution, on a sélectionné, capturé cest exactement lhistoire du livre presse-papier ce type de fonction. Mais la transparence peut avoir dautres fonctions. Un petit poisson dans leau est mangé, en général par un prédateur. Si, par chance, un certain nombre daccidents génétiques ont fait que certaines de ses cellules, dans un ensemble collectif suffisant, ont exprimé en permanence cet ensemble de protéines, tout dun coup il devient transparent, sauf son squelette. On a là le même type de capture d'une fonction préexistante, mais pour une fonction tout à fait différente, le déguisement.
Un dernier exemple permet de reconsidérer limage mécaniste que nous avons de la vie en général et de lhomme en particulier.
Beaucoup de gens sinquiètent avec raison de lusage quon peut faire du programme de séquençage du génome humain. En particulier, il est évident quidentifier les caractéristiques génétiques permet de dresser une carte dun certain nombre de propriétés générales des individus et permet den faire une classification. On peut domestiquer lhomme comme on domestique les animaux. On peut sinquiéter, mais heureusement, d'une certaine manière, cest une absurdité. Lidée de connaître un génome et de prédire le destin des individus supposerait quil y ait une correspondance mécanique entre la nature du génome et la nature de lindividu. Or, le mécanisme qui fait que les fonctions capturent des structures est imprévisible, par construction. La situation particulière durgence dans laquelle va être placé un individu, qui fera que la descendance de cet individu aura survécu parce quelle aura trouvé telle solution, est imprévisible. La sélection des nouvelles fonctions, cest-à-dire à la fois leur création et leur sélection, est complètement impossible à prévoir.
Lidée même deugénisme na pas de sens. On peut avoir lidée de faire des gens extrêmement agressifs : on fait des chiens extrêmement agressifs, des grands, des petits, des poilus, aucune problème. Mais décider de ce qui fait lhumanité de lhomme, de ce qui fait, en particulier, ses capacités créatrices ou de ce quil serait un homme meilleur, un homme idéal, est une absurdité parce que cest, par construction, impossible. Un exemple permet dillustrer cette absurdité.
Lorsque la vie est apparue, il y a 3 milliards 800 millions dannées à peu près, la Terre était vaste et peu occupée par des organismes vivants. Les premiers organismes ont eu énormément de place pour se multiplier. Ils navaient pas à prendre en compte les autres. Le but des organismes vivants est le même que le but de tout système physique : occuper le plus possible despace et détat, occuper tout, avec les moyens dont ils disposent. Un moyen rapide, cest de faire un autre soi-même, de se multiplier. Mais cela ne dure quun temps, car tout dun coup, il faut commencer à prendre en compte lautre. La manière brutale et habituelle, efficace au premier degré, cest de sen débarrasser, le manger et prendre sa place. La première fonction à créer est une sonde, un capteur qui vous dit : Cet autre me ressemble ou ne me ressemble pas. Deuxième fonction : il va falloir utiliser ce capteur pour tuer lautre. Le capteur doit avoir des relais, qui doivent contrôler la synthèse d'un certain nombre de produits toxiques qui vont être ensuite libérés dans lenvironnement de façon à détruire lautre, qui va ensuite être mangé. Ce sont des antibiotiques, inventés ainsi par les bactéries extrêmement tôt. Il y en a dailleurs une grande variété. Cependant la bactérie qui produit les antibiotiques a des petits problèmes, puisquil ne faut pas quelle se tue elle-même. Il faut quelle crée un système dimmunité contre ses propres missiles. Cest un système qui existe, extrêmement répandu dans la nature. Voilà un premier ensemble de fonctions : capteurs, cascade de régulations, sécrétions, immunité. Ensuite, petit à petit, dans la prise en compte de lautre, il y a la coopération, le parasitisme, des relations déquilibre face aux prédateurs, toute une variété de possibilités ; mais il y en a une qui a été inventée plus tard, probablement il y a un milliard dannées, qui est de se mettre ensemble, cest-à-dire faire des organismes multicellulaires. Là se créent de nouvelles fonctions. Créer un organisme multicellulaire amène des contraintes particulières dans lenvironnement, quil faut gérer. Il faut éventuellement une tête, une queue, il y a des problèmes de symétrie, toute une série de problèmes nouveaux à régler pour lesquels il faut inventer des fonctions.
Ainsi petit à petit se sont créés des organismes de plus en plus compliqués, jusqu'aux insectes ou à lhomme. Dans le cas des insectes, par exemple, on sest interrogé récemment sur la façon dont les insectes résistent aux microbes. Ont-ils un mécanisme de défense ? On a injecté des microbes dans les insectes ; quand on injecte un champignon à la mouche drosophile, il se crée une cascade du type juste décrit : un capteur reconnaît le champignon, crée son antibiotique, quon a appelé, de façon appropriée, la drosomycine. On a par ailleurs, au cours des analyses de gènes et de génome, la possibilité de reconnaître les gènes assez facilement : aussi, lorsquon a un produit, lorsquon a une cascade dévénements de ce genre, on peut repérer les gènes correspondants et savoir quels ils sont, où ils se trouvent dans les chromosomes et repérer lensemble de la mécanique correspondante. Or, on sest aperçu quon connaissait déjà cette cascade particulière de résistance. Elle avait été découverte ailleurs, dans un contexte différent, avec une fonction différente. Il sagit dune cascade qui est éveillée transitoirement au cours de la différenciation de lembryon de la larve de la mouche pour en déterminer laxe dorso-ventral, cest-à-dire la position du dos par rapport à la position du ventre. Cette cascade, ce très ancestral mécanisme de fabrication dantibiotiques, a été capturé par les organismes multicellulaires pour déterminer la forme lindividu ! Extrapolons : nous avons des systèmes immunitaires ; si nous survivons aujourdhui, ce nest pas à cause de notre intelligence mais simplement parce que nos ancêtres ont résisté à la peste, au choléra et à la variole. Nous avons un grand ensemble de systèmes immunitaires fonctionnels. On peut alors imaginer que le fait aujourdhui dêtre mis en face dune nouvelle maladie décide de la forme de nos descendants futurs ! C'est typiquement cela qui interdit toute idée possible de pensée eugénique.
Quelques éléments encore nous montreront comment se construisent les organismes vivants. Lordre des gènes dans les chromosomes, le génome, nest pas un hasard, mais est directement lié à larchitecture de la cellule, cest-à-dire quil y a un lien entre la forme du programme et la forme de la cellule. Cela est connu depuis un certain temps chez les organismes multicellulaires. Chez les insectes, on saperçoit que les gènes qui contrôlent les différents éléments du corps sont ordonnés exactement dans le même ordre, de la tête à la queue. Si on prend, par exemple, un de ces gènes et quon le déplace à un autre endroit, on va déplacer les organes correspondants. On peut faire des mouches dans lesquelles on met une patte à la place dune antenne, simplement en déplaçant un de ces gènes. Il y a donc un programme fait de façon modulaire, qui dit séquentiellement comment se font les choses. Si vous comparez les insectes ou nous-mêmes, et les crustacés, vous verrez que le nerf central dans le dos passe sur le ventre et inversement. Chez nous, on a juste une colonne vertébrale dans le dos et tout reste dans le ventre. On sest aperçu que cétait effectivement le même plan chez les crustacés, mais quil y avait deux gènes qui étaient inversés, ce qui inverse le plan dos-ventre chez un animal comme le homard, par rapport à la mouche ... ou à l'homme.
La dernière découverte, qui fait de la mouche lun des modèles de lhomme, est que, chez certains animaux, en particulier chez les mammifères, le plan est le même que celui de la mouche drosophile, exactement dans le même ordre, mais simplement la construction de lhomme est réglée par un quatuor : au lieu dêtre une seule partition quon jouerait une seule fois, on a quatre partitions côte à côte, simultanées, qui déterminent nos segments, car nous sommes segmentés. Il suffit de regarder ses vertèbres et ses côtes pour sen rendre compte. Nous sommes segmentés, mais cela se voit moins parce que, comme dans un quatuor, la partition se déploie : nous avons ainsi des vertèbres qui deviennent tout à fait déformées, qui vont faire une tête, par exemple. On retrouve, malgré tout, à nouveau cette idée dun plan et dune organisation générale.
En résumé, on peut considérer que les organismes vivants sont construits à partir dun programme, que ce programme est très lié à larchitecture générale des organismes, mais il ne faut jamais oublier que ce programme a la particularité, par construction, même en restant strictement déterministe, de créer systématiquement de limprévu.

 

VIDEO         CANAL  U             LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon