|
|
|
|
|
|
Modification des protéines : la myristoylation décodée à l’échelle de l’organisme |
|
|
|
|
|
Modification des protéines : la myristoylation décodée à l’échelle de l’organisme
lundi 2 juillet 2018
Une équipe de l'Institut de biologie intégrative de la cellule, en collaboration avec l’Institut de chimie des substances naturelles et l’Ecole Polytechnique, a cartographié et quantifié pour la première fois, chez l’homme et la plante modèle Arabidopsis thaliana, le myristoylome, c’est-à-dire l’ensemble des protéines portant une étiquette constituée d'un acide gras qui cible ces protéines aux membranes. Ces données publiées dans les revues Nature Chemical Biology et Plant Cell permettent enfin d’élucider comment la machinerie de modification décrypte ses cibles.
Toute protéine subit des modifications, réversibles ou irréversibles, qui impactent son cycle de vie et sa fonction. Le nombre de modifications décrit pour une seule protéine peut varier de 0 à 100 et chaque espèce modifiée constitue une protéoforme. Plus de 400 modifications différentes contribuent à cette diversité. On estime que les génomes humains et des plantes qui contiennent environ 20 000 gènes peuvent générer plusieurs milliards de protéoformes, les modifications assurant ainsi une diversité extrêmement importante.
Parmi les modifications protéiques, la myristoylation (MYR) correspond à un des dispositifs les plus intrigants que les cellules utilisent pour positionner précisément les protéines dans des compartiments membranaires spécifiques. La modification consiste à ajouter à une extrémité d'une protéine une petite étiquette faite d'un acide gras appelé myristate. Cette étiquette confère un caractère huileux qui agit à la fois comme « code postal » et comme ancre aidant à « expédier » la protéine vers une membrane particulière tout en assurant la fixation stable autant de temps que nécessaire. Bien que cette étiquette soit cruciale pour la survie cellulaire et fondamentale dans des processus importants pour la santé et les pathologies, la MYR est l'une des modifications les plus difficiles à étudier et à décoder, le répertoire complet de MYR - le myristoylome - étant inconnu jusqu'à présent.
Une étude de l'équipe de Carmela Giglione à l'I2BC à Gif-sur-Yvette réalisée en collaboration avec deux autres équipes du plateau de Saclay (ICSN et Ecole Polytechnique) a réussi à cartographier pour la première fois des ensembles complets de protéines possédant une étiquette de MYR, et ce chez l’homme et le modèle de plante Arabidopsis thaliana. Ils ont surmonté un certain nombre d’obstacles critiques liés à l'analyse de la MYR en développant et en appliquant progressivement des approches complémentaires. Tout d’abord, les structures cristallines de l'enzyme humaine impliquée dans cette modification ardue associée à plusieurs cibles connues ont révélé des sites de liaison inattendus ; ceci a permis de comprendre le schéma général de reconnaissance du dispositif de la modification, resté insaisissable jusqu’alors. Les informations obtenues par ces données structurales ont été ensuite combinées à (i) la mise en place d’un test reconstitué permettant de mesurer à très grande échelle la MYR éventuelle d’une bibliothèque de mimes de toutes les protéines cibles possibles de la cellule, (ii) la mise au point d’algorithmes dédiés utilisant ces données et (iii) une analyse globale de la diversité des protéines subissant cette modification réalisée chez les deux organismes pour valider ces approches.
Les auteurs ont aussi réalisé en parallèle un profilage adapté des protéines membranaires pour révéler leur niveau de MYR. Ce protocole implique un fractionnement cellulaire combiné à une séparation à haute résolution des protéines avec l’identification des composants huileux par spectrométrie de masse couplée à des méthodes d'acquisition dépendant des données ciblant spécifiquement les peptides modifiés par MYR. Ce travail a révélé la distribution relative et quantitative de la plus grande partie des protéines avec MYR de la cellule. L’étude représente également le plus grand ensemble de données de protéines avec MYR identifiées in vivo à ce jour et il permet enfin de comprendre comment les protéines avec MYR sont distribuées dans différents compartiments subcellulaires. Enfin, ces études ont révélé que MYR implique un ensemble non négligeable de cibles chevauchantes possédant une autre modification N-terminale largement répandue, la N-alpha-acétylation. Ceci pose la question de la fonction cellulaire de protéoformes qui peuvent subir deux modifications distinctes. Enfin, les auteurs ont identifié les empreintes signature de l’ajout d’un autre acide gras, le palmitate. Ils ont découvert que cette PM est imprimé sur les gènes codant certaines protéines possédant MYR, ce qui permet la reconnaissance visuelle facile des séquences présentant les deux modifications. L’identification de la MYR que l’étude présente résout donc l’identification de la seconde modification.
Dans l'ensemble, ces études récentes permettent (i) d'accéder à la face largement cachée de l'une des modifications protéiques les plus intrigantes des organismes pluricellulaires, (ii) d'identifier plus d'un millier de nouvelles protéines la portant et (iii) en révéler le caractère hétérogène dans les deux organismes étudiés.
Figure : Etapes principales de l’apprentissage progressif utilisé pour identifier exhaustivement toutes les cibles de la modification à l’échelle du protéome entier L’identification de la structure de la NMT humaine complexée à plusieurs substrats (A) permet d’identifier et de mesurer sur des substrats issus des protéomes de plante et de l’homme leur capacité ex vivo à être modifiés (B). Ces données permettent de compiler visuellement le profil de reconnaissance (C) et d’entrainer des algorithmes de prédictions (D) basés sur la définition de frontières entre les substrats (« Myr ») et les autres (« 0 »). Pour vérifier la pertinence des données prédites, des analyses en spectrométrie de masse ciblées sont réalisées sur chaque organisme (E). Chez la plante, des mesures fines permettent de déterminer dans chaque compartiment les quantités relatives de chaque forme (F). Enfin, un schéma général impliquant d’autres modifications permet de visualiser la complexité du phénomène (G).
© Thierry Meinnel & Carmela Giglione
Références :
* Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern. Castrec B, Dian C, Ciccone S, Ebert CL, Bienvenut WV, Le Caer JP, Steyaert JM, Giglione C, Meinnel T.
Nature Chemical Biology 2018 14: 671-679 doi: 10.1038/s41589-018-0077-5. Epub 2018 Jun 11
* Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Plant Cell. 2018 Mar;30(3):543-562. doi: 10.1105/tpc.17.00523. Epub 2018 Feb 16.
* Lipid Anchor: Postal Code for Proteins on the Road to Membranes
*
Contacts :
* Thierry Meinnel Tél. +33 169824680
* Carmela Giglione Tél. +33 169824644 Institut de biologie intégrative de la cellule
UMR9198 (CNRS/CEA/Université Paris-Sud
91198 Gif/Yvette
DOCUMENT CNRS LIEN
|
|
|
|
|
|
|
De la génétique humaine à la dépollution de la planète |
|
|
|
|
|
De la génétique humaine à la dépollution de la planète
18.03.2020, par Grégory Fléchet
Lauréat de la médaille d’or du CNRS en 2008, Jean Weissenbach a permis à la génétique d’entrer dans une nouvelle ère, avant de s’intéresser à la décontamination de l’environnement par les bactéries. Rencontre avec un scientifique d'exception.
Au début des années 1990, vous avez acquis une renommée internationale en réalisant la première carte génétique humaine à haute résolution. Dans quelles circonstances êtes-vous parvenu à mettre au point ce qui allait devenir un outil de référence pour la biologie moléculaire ?
Jean Weissenbach1 : D’une certaine manière, ce projet est la concrétisation d’intenses discussions avec le généticien Daniel Cohen. En 1990, celui-ci dirige le Centre d’étude du polymorphisme humain de l’hôpital Saint-Louis et entretient des relations étroites avec l’équipe du Téléthon et l’Association française contre les myopathies (AFM). Nous proposons alors à l’AFM un grand projet de cartographie du génome humain comprenant une carte physique et une carte génétique. À l’époque, le Téléthon est en pleine ascension ce qui va nous permettre de disposer de moyens financiers sans précédent pour relever ce challenge. En 1992, soit deux ans après le lancement du projet, nous avons publié les premières versions de ces cartes du génome humain.
À quels défis avez-vous dû faire face tout au long de cette véritable épopée scientifique ?
J.W. : Il s’agissait d’un projet créé ex nihilo pour lequel il a donc fallu concevoir un laboratoire dans son intégralité, mais aussi former toute une équipe d’ingénieurs et de techniciens au travail inédit que constituait la réalisation d’une carte génétique. Pour autant, nous n’avancions pas totalement à l’aveugle puisque l’ensemble de la démarche de biologie moléculaire sur laquelle reposait notre méthode de cartographie avait pu être testé à plus petite échelle au Centre d’étude du polymorphisme humain. Ce projet était aussi inédit de par sa gouvernance, puisque toutes les décisions se prenaient au sein même du Généthon dont le financement était presque intégralement assuré par l’AFM. Ce mode de fonctionnement, à la fois très centralisé et non démocratique, nous a permis d’être très réactifs à chaque étape importante du projet, le moindre besoin de matériel étant par exemple satisfait dans la journée par l’administration du Généthon.
Luc Morvan / AFM-Téléthon
Pour réaliser cette carte génétique, vous vous êtes appuyé sur l’utilisation de marqueurs microsatellites. Pour quelles raisons cette stratégie s’est-elle avérée payante ?
J.W. : La qualité et la densité de ces marqueurs, qui sont en fait de courtes séquences répétitives de nucléotides variant beaucoup d’un individu à l’autre, ont été des éléments déterminants dans l’aboutissement de ce projet. Dans le cadre des études familiales qui était le nôtre, ces séquences microsatellites donnaient notamment beaucoup plus d’informations que les marqueurs RFLP (Restriction Fragment Length Polymorphism) majoritairement utilisés jusqu’ici.
À partir de la carte génétique, des centaines de gènes associés à des maladies génétiques ont pu être identifiés.
J.W. : L’établissement de cette carte a en effet constitué une étape essentielle vers la mise en évidence de gènes impliqués dans ce type de pathologies. À l’époque, seuls les gènes responsables des maladies les plus fréquentes avaient pu être localisés sur le génome. Repérer ne serait-ce qu’un seul gène nécessitait d’étudier un grand nombre de familles sur le plan génétique, or nous ne disposions pas de telles cohortes. Détenir pour la première fois une carte à haute résolution couvrant l’ensemble du génome humain a donc grandement facilité le diagnostic de ces maladies génétiques.
Vous avez ensuite participé au grand projet international de séquençage du génome humain. Quel fut, dans ce domaine, le rôle de la France à travers le Genoscope, ce centre national de séquençage que vous avez dirigé de 1997 à 2007 ?
J.W. : Après avoir contribué à la phase préliminaire du séquençage du génome humain par l’élaboration de la carte génétique, nous avons effectivement monté le Genoscope, qui a participé au séquençage proprement dit. Ce travail a débuté en 1996 avec la création d’un consortium public international regroupant les centres de séquençage nationaux des différents pays impliqués dans le projet « Génome humain ».
Dans le cadre de ce consortium, l’équipe du Genoscope s’est attaquée au séquençage du chromosome 14 qui contient entre autres des gènes de notre système immunitaire. Bien que notre participation fut modeste, ce chromosome ne représentant que 3 % du génome humain, elle fut menée avec rigueur puisque dès 2003, nous avons réussi à établir sa séquence d’un seul tenant, c’est-à-dire sans aucun « trou ». À titre de comparaison, la première version du génome entier obtenue en 2000 comptait plus de 200 000 lacunes génétiques, tandis que la version finale du projet public achevée en 2004 en comportait encore environ 300.
Séquençage du chromosome 14. Une équipe de chercheurs du Genoscope a réussi à établir un séquençage d'un seul tenant en 2003.
Patrick ALLARD/REA
Partager
Vous avez ensuite réorienté les travaux du Genoscope vers la microbiologie environnementale. Pourquoi ce choix ?
J.W. : J’ai pris la décision de recentrer une partie des activités scientifiques du Genoscope vers les micro-organismes de l’environnement à partir de l’an 2000, bien que nous ayons eu l’occasion de séquencer des génomes microbiens antérieurement. Le séquençage de tous ces génomes m’a soudainement fait prendre conscience que nous alimentions les bases de données de séquences d’ADN pour tout un tas d’espèces sans connaître le rôle d'un grand nombre de gènes. Chez les bactéries, il existe par ailleurs de nombreux gènes qui codent pour des enzymes susceptibles d’être utilisées dans le domaine des biotechnologies. Or, l’analyse des séquences des premiers génomes bactériens et ceux étudiés par la suite au Genoscope montrait que la fonction de 30 à 50 % des gènes identifiés était totalement inconnue.
Quels enseignements a-t-on tiré des premiers séquençages de génomes bactériens ?
J.W. : Cela a tout d’abord permis de constater qu’il existait une très grande plasticité génétique entre les différentes souches d’une même espèce bactérienne ; certains gènes étant propres à chaque souche. Au sein d’un même génome de bactérie, le séquençage a aussi montré que des gènes aux fonctions particulières sont parfois regroupés sous forme d’îlots. Certains de ces groupes de gènes sont responsables de la pathogénicité des micro-organismes tandis que d’autres leur confèrent des propriétés métaboliques spécifiques. Un tel regroupement facilite la transmission d’ensembles de gènes entre souches bactériennes, voire d’une espèce à l’autre. C’est ce que l’on nomme le transfert horizontal, et cela a aussi été mis en évidence grâce au séquençage.
Chacune des 96 pointes de ce robot prélève une colonie bactérienne ayant intégré un fragment de l'ADN à séquencer et l'inocule dans une plaque 96 puits remplie de milieu nutritif. Ces plaques sont mises ensuite à pousser pour multiplier chacun des clones et donc, in fine, multiplier les copies de chacun des fragments de l'ADN à séquencer. L'ensemble de ces clones constitue la "banque" d'ADN du Genoscope.
Hubert RAGUET /CNRS Photothèque
L’un des axes de recherche actuels du laboratoire Génomique métabolique, que vous avez dirigé jusqu’en 2009, concerne l’identification de nouvelles activités enzymatiques chez les bactéries.
J.W. : L’étude de génomes bactériens s’est en premier lieu focalisée sur les organismes pathogènes et un petit nombre de bactéries pouvant être cultivées en laboratoire. Mais il faut savoir qu’une fraction bien plus importante de micro-organismes ne peut être cultivée. Avec l’appui de la métagénomique, qui permet de séquencer la plupart des génomes de micro-organismes peuplant un milieu donné, nous sommes désormais en mesure de réaliser des inventaires d’espèces dans tous les environnements de la biosphère. Ces investigations à grande échelle permettent entre autres de découvrir des gènes codant pour de nouveaux catalyseurs biologiques d’intérêt industriel. Elles ont également pour but de répertorier les fonctions des innombrables gènes microbiens qu’il reste à découvrir.
Sur quelles thématiques en lien avec la microbiologie environnementale avez-vous travaillé au sein du laboratoire Génomique métabolique ?
J.W. : Nous avons commencé par étudier les flores bactériennes de l'épuration des eaux usées, où nous avons identifié de nouvelles divisions bactériennes et séquencé, il y a plus de dix ans, le premier génome d'une bactérie anaérobie non cultivée. Grâce à l'analyse de ce génome, nous avons pu identifier les gènes manquants de la voie métabolique de dégradation anaérobie de la lysine, un aminoacide très abondant lors de la digestion anaérobie des boues d'épuration.
Avec l’appui de la métagénomique (...), nous sommes désormais en mesure de réaliser des inventaires d’espèces dans tous les environnements de la biosphère.
Dans le domaine de la microbiologie environnementale, la plus grande contribution de notre laboratoire reste à ce jour le projet Tara Océans. Ce programme de recherche a en effet permis d'obtenir un catalogue des gènes des bactéries du monde marin qui s'approche d'un inventaire complet. En ce qui concerne les protistes du plancton océanique, des organismes unicellulaires pourvus d'un noyau, Tara Océans a mis en évidence une diversité exceptionnelle de plus de 150 000 espèces dont un tiers n'appartient à aucun groupe taxonomique connu. Les résultats du projet montrent aussi que les approches écologiques classiques sont loin de rendre compte de la diversité de ce plancton marin eucaryote.
Plus récemment, vous vous êtes intéressé aux processus de biodégradation de la chlordécone, qui entre dans la constitution d’un pesticide organochloré devenu tristement célèbre aux Antilles2. Quel était l’objectif de ces travaux ?
J.W. : La chlordécone est une molécule très difficile à dégrader à cause de sa structure en forme de cube très compacte et des nombreux atomes de chlore présents à sa surface. Nous avons donc voulu savoir ce qu’il advenait de cet organochloré une fois qu’il se retrouve dans l’environnement. Par des approches de microbiologie, nous avons recherché des bactéries du sol capables de dégrader la chlordécone. Une fois identifiées, ces bactéries ont été mises en culture en présence de la substance chimique afin de la métaboliser pour pouvoir ensuite en analyser les produits de dégradation. L’action des bactéries aboutit à divers produits de transformation, dont un ne comporte plus que cinq atomes de chlore contre dix pour la molécule de départ.
D’autres investigations menées sur les sols provenant des Antilles nous ont permis de retrouver certains de ces produits de biodégradation dans des sols contaminés par la chlordécone. Ces conclusions laissent espérer que cette pollution sera réduite plus rapidement que prévu par l’action de micro-organismes présents dans les sols de la Martinique et de la Guadeloupe.
En novembre dernier vous avez publié Dépolluer la planète, qui aborde justement la question des pollutions environnementales et la possibilité de les traiter en mettant à profit le métabolisme de certaines bactéries. Quel est le point de départ de ce livre ?
J.W. : Celui-ci coïncide avec le choix du laboratoire Génomique métabolique d’appliquer des techniques de métagénomique à ces milieux très particuliers que sont les boues activées des stations d’épuration. Il s’agissait alors d’identifier les bactéries présentes tout au long de ce processus biologique qui est à la base de la première industrie biotechnologique mondiale. Au fil du temps et des travaux du laboratoire, j’ai fini par m’intéresser à la question de la bioremédiation au sens large. Cet ouvrage propose donc une sorte de synthèse des processus microbiens capables de dégrader ou neutraliser des substances chimiques qui se retrouvent dans la nature. À ce propos, il faut garder à l’esprit que sans l’action des micro-organismes de l’environnement, l’abondance de molécules chimiques produites tout au long de l’histoire de l’humanité aurait depuis longtemps compromis la survie de notre espèce.
Comment fonctionne plus précisément la bioremédiation ?
J.W. : Elle repose sur un principe à l'œuvre depuis l'apparition de la vie sur Terre, à savoir la dégradation et la transformation par les organismes vivants de la très grande majorité des composés chimiques présents dans la biosphère.
Après une marée noire, des espèces de bactéries naturellement présentes dans les océans sont capables de proliférer et de consommer certains hydrocarbures, limitant ainsi les conséquences de la catastrophe sur les écosystèmes marins.
La bioremédiation réunit tout un ensemble de procédés visant à dépolluer les sols, les sédiments, les eaux de surface et souterraines. Ces méthodes s'appuient sur l'utilisation de bactéries, de champignons ou de végétaux ainsi que sur les enzymes produites par ces espèces. Des roseaux peuvent par exemple être plantés aux abords d'une étendue d'eau pour en extraire les phosphates présents en trop grande quantité. Après une marée noire, des espèces de bactéries naturellement présentes dans les océans sont capables de proliférer et de consommer certains hydrocarbures, limitant ainsi les conséquences de la catastrophe sur les écosystèmes marins.
Si le champ d'application de la bioremédiation semble très large, que peut-on véritablement attendre de cette méthode de dépollution ?
J.W. : Elle pourrait faciliter la réhabilitation d'une partie des millions de sites contaminés par nos activités industrielles à travers la planète. Rien que sur le territoire français, la base de données Basias recense plus de 340 000 sites potentiellement pollués, soit une superficie totale d'environ 100 000 hectares. En cas de pollution par des métaux, la remédiation par les plantes et leur système racinaire reste le procédé le plus approprié. Pour les polluants organiques il existe, en théorie, plus de possibilités. Mais chaque site est à considérer comme un cas d'espèce où il faut commencer par une évaluation des méthodes les plus adaptées qui ne seront jamais idéales. D'une manière générale, la bioremédiation n'est pas une panacée. De plus, ses effets sont lents à s'établir et l'élimination de la totalité d'un polluant est rarissime, voire illusoire. Les échecs ou les succès mitigés sont d'ailleurs nombreux.
À l'inverse, ce sont des méthodes peu perturbantes pour le milieu et souvent peu onéreuses. Dans tous les cas, il importe que ce processus aboutisse à des molécules du métabolisme qui pourront ainsi être recyclées par le vivant car il arrive parfois que des intermédiaires de biodégradation soient eux aussi toxiques, voire plus toxiques que le produit de départ. En outre, tous les polluants ne peuvent être traités par bioremédiation. Les composés plastiques en sont sans doute l'illustration la plus frappante. Ces polymères synthétiques sont présents sur Terre depuis trop peu de temps pour que des micro-organismes capables de les utiliser comme source de nourriture aient pu émerger par le biais de l'évolution. ♦
À lire
Dépolluer la planète, Jean Weissenbach, CNRS Éditions, coll. « De vive voix », novembre 2019.
Notes
* 1.
Directeur de recherche CNRS au laboratoire Génomique métabolique (CNRS/Université Evry-Val-d'Essonne/CEA)
* 2.
La chlordécone est le constituant principal d’un insecticide éponyme. Entre 1972 et 1993, cette substance qui appartient au groupe des organochlorés comme le DDT a été répandue en grande quantité sur les bananeraies de la Guadeloupe et de la Martinique pour lutter contre le charançon noir du bananier. À la fois très toxique et susceptible de persister dans l’environnement durant des décennies, voire des siècles, la chlordécone est suspectée d’être à l’origine de la forte augmentation de cancers de la prostate qui frappe les Antilles françaises.
DOCUMENT CNRS LIEN
|
|
|
|
|
|
|
RENCONTRE AUTOUR DU CERVEAU : DE LA MOLÉCULE AU COMPORTEMENT |
|
|
|
|
|
RENCONTRE AUTOUR DU CERVEAU : DE LA MOLÉCULE AU COMPORTEMENT
UNE CONFERENCE de Jean-Antoine GIRAULT, Directeur de recherche, Directeur de l’Institut du Fer-à-Moulin.
De la molécule au comportement, du comportement à la molécule… le cerveau n’a pas fini de révéler ses mystères !
Jean-Antoine Girault dirige l’Institut du Fer-à-Moulin, dédié à l’étude du développement et de la plasticité du système nerveux. Son but : associer diverses approches – biochimique, fonctionnelle, comportementale – pour mieux comprendre les mécanismes en oeuvre dans la transmission des messages entre les neurones.
Son équipe « neurotransmission et signalisation » cible ses recherches autour du striatum, une région du cerveau impliquée dans le contrôle des mouvements, la motivation, les habitudes et la mémoire procédurale.
Divers neurotransmetteurs régulent l’activité de cette structure : parmi eux, la dopamine intéresse tout particulièrement Jean-Antoine Girault, car elle joue un rôle majeur dans les comportements d’apprentissage, de récompense, voire d’addiction… jusqu’à produire certaines modifications prolongées de l’expression des gènes !
VIDEO CANAL U LIEN |
|
|
|
|
|
|
Lorsque la moelle se passe du cerveau pour commander nos artères |
|
|
|
|
|
Lorsque la moelle se passe du cerveau pour commander nos artères
mardi 17 juillet 2018
Comment le système nerveux moteur mobilise-t-il le système nerveux autonome pour que l’oxygénation des muscles soit adaptée à la demande physiologique? Alors que l’on pensait que l’interface entre système nerveux somatique et autonome était située dans le tronc cérébral, les chercheurs montrent que la moelle épinière est le siège d’un mécanisme de couplage entre activités somatiques et autonomes. L’activation de neurones cholinergiques intraspinaux, en produisant un rythme lent commun aux deux types de neurones, serait responsable de cette mise en cohérence.
Afin de faire face à l’augmentation des besoins physiologiques lors d’une activité physique telle que la locomotion, le système nerveux somatique (en charge des mouvements volontaires via le contrôle des muscles striés) et le système nerveux autonome (qui contrôle la vascularisation, la digestion, le muscle cardiaque, la sudation…) doivent coordonner leurs actions. Alors que l’on pensait que l’interface entre système nerveux somatique et autonome se situait dans le tronc cérébral, ce travail montre que la moelle épinière est le siège d’un mécanisme de couplage entre activités somatiques et autonomes. Pour aborder cette question, les chercheurs ont utilisé une préparation in vitro de moelle épinière isolée de rat nouveau-né, dans laquelle il est possible d’enregistrer simultanément l’activité des systèmes nerveux somatique et autonome. Ils ont montré que l’acétylcholine, un neurotransmetteur abondant dans la moelle épinière pourrait jouer un rôle clé dans ce couplage entre activités locomotrices et sympathiques.
Dans la moelle épinière sont localisés les réseaux neuronaux capables de générer l’activité locomotrice; ces réseaux coordonnent ainsi l’activité des motoneurones qui vont faire se contracter les muscles. à côté de ce système somatique, sont situés les neurones de sortie du système nerveux sympathique (appelés neurones sympathiques intermédiolatéraux ou IMLs) qui, entre autres organes cibles, connectent les fibres lisses des artères.
Grâce à un cocktail particulier de neurotransmetteurs, on peut activer les réseaux locomoteurs et enregistrer dans la moelle épinière isolée une activité de locomotion. Dans ces expériences, seuls les motoneurones innervant les muscles des pattes et du dos sont activés rythmiquement en phase avec l’activité locomotrice.
Lorsque l’on administre sur la moelle épinière isolée, un agoniste (une substance qui mime l’effet d’un neurotransmetteur) d’une sous-classe de récepteurs à l’acétylcholine (les récepteurs muscariniques), on observe l’apparition d’un rythme lent que l’on enregistre non plus exclusivement au niveau des motoneurones mais aussi dans les neurones sympathiques. Cette activité est similaire aux variations lentes de pression artérielle que l’on observe spontanément chez l’homme et l’animal. Enfin, lorsque l’activité locomotrice et l’activité lente induite par l’acétylcholine sont simultanément déclenchées on observe une fusion des deux activités couplant ainsi l’activité des systèmes nerveux somatique et autonome et contribuant à la régulation de la pression artérielle lors d’un exercice.
Figure : Au cours de l'activation de récepteurs cholinergiques muscariniques (mAchT) dans la moelle épinière thoracique, on enregistre une commande synaptique lente reçue simultanément par les neurones du système nerveux sympathique situés dans la colonne intermediolateral (IML) et par les motoneurons somatiques (MNs). Cette commande somato-sympathique pourrait être la base des variations de pression artérielle (en mm de mercure, Hg) observées chez l’homme et l’animal et appelées vagues de Mayer.
© Jean-René Cazalets & Sandrine Bertrand
Références :
* Cholinergic-mediated coordination of rhythmic sympathetic and motor activities in the newborn rat spinal cord.
* Sourioux M, Bertrand SS, Cazalets JR.
PLoS Biol. 2018 Jul 9;16(7):e2005460. doi: 10.1371/journal.pbio.2005460. [Epub ahead of print]
*
Contacts :
* Jean-René Cazalets
Tél. 05 57 57 46 26
* Sandrine Bertrand
* UMR 5287 (CNRS/Université de Bordeaux)
Zone nord Bat 2 2ème étage
146, rue Léo Saignat
33076 Bordeaux cedex
DOCUMENT CNRS LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ] Précédente - Suivante |
|
|
|
|
|
|