ecole de musique piano
     
menu
 
 
 
 
 
 

NANOTECHNOLOGIE

 

Paris, 26 octobre 2014
Des colliers de nanoparticules d'or pour guider la lumière jusqu'au nanomètre

Des nanoparticules cristallines d'or alignées puis fusionnées en longues chaines peuvent servir à confiner l'énergie lumineuse à l'échelle nanométrique tout en permettant sa propagation à grande distance. C'est ce que vient de démontrer une équipe pluridisciplinaire du Centre d'élaboration de matériaux et d'études structurales (CEMES, CNRS), en collaboration avec des physiciens de Singapour et des chimistes de Bristol. Ces travaux sont publiés en ligne sur le site de la revue Nature Materials le 26 octobre.
La lumière peut servir à transmettre des informations. Cette propriété est par exemple utilisée dans la fibre optique et offre une alternative intéressante à la microélectronique1. L'utilisation de la lumière permet d'augmenter la vitesse de transmission et de réduire les pertes d'énergie qui se produisent par réchauffement lorsqu'un signal électrique est utilisé. Cependant il reste plusieurs défis à relever, notamment celui de la miniaturisation : avec la fibre optique il est en effet difficile de confiner la lumière dans une largeur inférieure au micromètre (soit 10-6 mètres).

Les électrons circulent librement dans les métaux et parfois se mettent à osciller collectivement à leur surface sous l'effet de la lumière, comme dans les métaux nobles tels l'or et l'argent. Les propriétés de ces oscillations collectives, appelées plasmons, offrent depuis une vingtaine d'années une voie prometteuse vers un confinement sub-longueur d'onde (c'est-à-dire inférieur au micromètre) de l'énergie lumineuse. En transmettant cette énergie portée par les photons aux électrons en mouvement, il est possible de transporter de l'information dans des structures plus étroites que les fibres optiques. Pour atteindre des confinements encore plus importants, la plasmonique2 s'intéresse désormais aux propriétés optiques de nanoparticules cristallines. La surface cristalline lisse évite de perturber les oscillations des électrons et limite les pertes d'énergie. Exploiter les propriétés de ces nanoparticules devrait donc permettre simultanément des confinements de l'ordre du nanomètre et le transport de l'information sur de grandes distances.

Dans cette étude, les chercheurs ont démontré que lorsque des nanoparticules d'or de dix nanomètres de diamètre sont alignées sous forme de chaine, les plasmons qu'elles portent génèrent des oscillations particulières, propices à la propagation ultra-confinée. Cependant à chaque passage entre deux nanoparticules, il existe une perte d'énergie. Si cette caractéristique peut être exploitée pour certaines applications qui nécessitent des sources de chaleur très localisées, notamment en médecine, elle ne favorise pas la propagation longue distance.

Les chercheurs ont donc délicatement fusionné les nano-perles, en focalisant un faisceau électronique à haute énergie, de façon à former un réseau continu et cristallin. Ils ont alors observé que les pertes d'énergie sont réduites et que les plasmons sont libres d'osciller sur de très grandes distances tout en restant confinés suivant le diamètre des nanoparticules. Au sein de ce collier de seulement dix nanomètres de large, l'information peut voyager jusqu'à 4000 nanomètres.

Un autre défi relevé par cette étude a été de cartographier, avec une précision exceptionnelle, les oscillations des électrons observées à la surface de la chaine de nanoparticules. Les différents types de mouvement des plasmons ont été caractérisés par une technique de microscopie appelée spectroscopie de perte d'énergie des électrons (EELS) dont la très fine résolution spatiale et spectrale a permis aux chercheurs de proposer un nouveau modèle théorique du comportement des plasmons. Les simulations basées sur ce modèle reproduisent les expériences avec une fidélité sans précédent.

Ces travaux qui résultent d'une collaboration à long terme avec des équipes de Bristol et de Singapour pourraient mener à une miniaturisation extrême du guidage de la lumière et ouvrir la voie vers des applications en matière de capteur, pour le photovoltaïque par exemple, et en télécommunication.

 

DOCUMENT         CNRS         LIEN

 
 
 
 

UN NOUVEAU MOTEUR ÉLECTRIQUE SANS BOBINE

 

UNE INVENTION RÉVOLUTIONNAIRE PERMETTRAIT DE GÉNÉRER DE L’ÉLECTRICITÉ GRÂCE À DES AIMANTS

 

DOCUMENT      sciencepost     LIEN

 
 
 
 

CERVEAU VIRTUEL

 

Human Brain Project : la course au cerveau virtuel est lancée

Elena Sender

Publié le 07-10-2013 à 17h12
Mis à jour à 17h15

Top départ pour le Human Brain Project demain à Lausanne. Retrouvez le reportage de Sciences et Avenir à Neuropolis où les chercheurs veulent créer une version numérique du cerveau humain.
Le supercalculateur "blue gene", joyau de Neuropolis. (IBM)Le supercalculateur "blue gene", joyau de Neuropolis. (IBM)


Sciences et Avenir vous propose de retrouver le reportage d'Elena Sender, envoyée spéciale à Lausanne, qui était paru dans le numéro 790 de décembre 2012.

FUTURISTE. Pour l’instant, ce n’est qu’un pré sur le campus de l’École polytechnique fédérale de Lausanne (EPFL), face au lac Léman, avec vue imprenable sur les Alpes suisses. Dans quatre ans, s’élèvera un bâtiment futuriste de 30.000 m2 d’une valeur de 100 millions de francs suisses (83 millions d’euros) qui abritera un projet exceptionnel baptisé Neuropolis, voulu conjointement par l’EPFL, les universités de Lausanne et de Genève ainsi que les autorités politiques suisses : le futur « Cern » du cerveau, à l’image du grand centre de recherche consacré à la physique des particules, à la frontière franco-suisse.

Il faut en effet imaginer un complexe de simulation faisant « mouliner » jour et nuit un supercalculateur effectuant 1018 opérations à la seconde, avec l’ambition de faire « vivre » un cerveau virtuel ! Nourri par toutes les données disponibles de la neurophysiologie, mais aussi de l’imagerie médicale de pointe, cet encéphale – lorsqu’il sera achevé – réagira (presque) comme un vrai.

JOYSTICK. Imaginons le chercheur dans la salle des commandes telle qu’elle se présentera en 2016 lorsque Neuropolis sera opérationnel : il siégera face à des écrans géants projetant des images cérébrales exceptionnelles. D’un mouvement de joystick, il naviguera dans le tissu virtuel, se promènera entre les neurones, zoomera sur une connexion, pointera un canal ioniqueou une synpase pour y observer les échanges de neuromédiateurs. Selon les besoins de son étude, il enverra un influx électrique ici ou là et regardera le système nerveux réagir en temps réel. Dans un bureau attenant, une équipe de recherche s’apprêtera, quant à elle, à tester un « candidat médicament » modélisé en 3D sur un modèle de cerveau malade d’Alzheimer tandis qu’une autre équipe étudiera, par exemple, le câblage neuronal dans la schizophrénie. Venus du monde entier, des chercheurs disposeront de la plateforme de simulation pour éprouver leurs hypothèses, leurs molécules, leurs traceurs… Le rêve d’un cerveau in silico (voir l'encadré "Repères"), ouvert à tous, est en passe de devenir réalité.

"Être un petit poisson dans une grande piscine ou un gros poisson dans une petite piscine ?"

L’idée de ce projet hors normes a germé sur le campus, à une centaine de mètres de là, au
deuxième étage d’un bâtiment métallique aux modules rouge, orange et gris, dans le bureau de Patrick Aebischer, président de l’EPFL depuis 2000. Avant son arrivée, l’École polytechnique n’avait jamais vu le museau d’une souris dans ses laboratoires. C’est ce neurobiologiste qui y a imposé la recherche et l’enseignement en sciences de la vie.

« En dix ans, nous avons embauché 55 professeurs de biologie parmi les meilleurs », raconte fièrement l’homme fort de l’école. Ce qui, il ne s’en cache pas, « a suscité énormément de débats ». Cet entrepreneur, manager « à l’américaine » – il a travaillé pendant huit ans à l’université Brown aux États-Unis – voit grand. Bras croisés, ponctuant ses phrases d’expressions anglaises, il souhaite créer « a big science » pour la biologie.

« Comme les astronomes ont leur grand télescope, les physiciens leur accélérateur de particules, les biologistes doivent avoir leur plateforme de simulation du vivant » - Patrick Aebischer.

Le patron de l’EPFL se penche sur une table basse dont le plateau n’est autre qu’une photo aérienne du campus, et pointe du doigt un carré inoccupé : « Ce sera ici, à
Neuropolis. »

"PATCH-CLAMP". Tout a commencé en 2001, lorsque Patrick Aebischer a rencontré Henry Markram, neurophysiologiste sud-africain, passé maître dans l’art du patch-clamp (la mesure des paramètres électrophysiologiques) des neurones. « Henry a deux cerveaux, rapporte Patrick Aebischer. Celui de l’expérimentateur et celui de l’informaticien, persuadé que le futur des neurosciences passe par la simulation. » Après avoir travaillé à l’Institut Weizmann, à Rehovot (Israël), et aux National Institutes of Health, à Bethesda (États-Unis), puis à l’Institut Max-Planck pour la recherche médicale à Heidelberg (Allemagne), Henry Markram est alors sur le point de signer un contrat en or au Massachusetts Institute of Technology (États-Unis). « Je lui ai posé la question de savoir s’il préférait être un petit poisson dans une grande piscine ou un gros poisson dans une petite piscine », se souvient Patrick Aebischer, l’œil malin. Et le tout nouveau patron de l’EPFL a attrapé Markram dans ses filets, lui donnant carte blanche et un gros budget. Celui-ci lance alors son projet Blue Brain, la simulation numérique du fonctionnement cérébral, l’EPFL lui apportant la pièce maîtresse sur un plateau : « Nous avons acheté Blue Gene, puissant supercalculateur », raconte Patrick Aebischer.


Installé en 2005, l’ordinateur fait depuis tourner l’ensemble du programme. En 2011, nouveau bond en avant. L’équipe s’associe à 120 autres laboratoires de 22 pays et devient le consortium Human Brain Project (HBP). Le HBP décide alors de concourir dans un appel à projets du programme Future and Emerging Technologies Flagship Initiatives, lancé par l’Union européenne pour aider le projet scientifique le plus prometteur pour les dix ans à venir. Avec, à la clé, une subvention colossale d’un milliard d’euros ! Fin 2012, HBP figure parmi les six derniers projets en lice, le gagnant devant être désigné au cours de 2013 (le HBP a effectivement été désigné en janvier de cette année co-lauréat de la bourse de l'Union Européenne).

Le calculateur Blue Gene a simulé la première colonne corticale de souris dès 2008

Pour rencontrer le créateur de Blue Brain, il faut marcher dix minutes, sous la pluie, à
travers le campus en chantier. On croise sur le chemin deux énormes grues qui réduisent à néant un building, celui-ci devant être remplacé d’ici à deux ans par le nouveau Centre de neuroprothèses. Viendront s’y installer le laboratoire du Français Grégoire Courtine, dont les équipes ont fait remarcher des souris paraplégiques ; celui de l’Espagnol José Milan, spécialiste des interfaces homme-machine ; ou encore celui de l’Allemand Olaf Blanke, qui travaille sur les illusions produites par le cerveau.

PUIT DE LUMIÈRE. Le QG de Henry Markram apparaît enfin. Un cube blanc, percé d’un puits de lumière. Chemise claire à petits motifs, yeux bleus perçants, le chercheur est habité par son sujet. De sa voix monocorde, il raconte comment la compréhension du cerveau l’a toujours obsédé : « Mon désir est de partir du cerveau entier puis de descendre jusqu’au niveau des neurones, à celui des cellules uniques, puis des canaux ioniques, des protéines et des gènes. » Pour cela, une seule méthode : l’agrégation de toutes les connaissances disponibles dans un seul et même modèle. « 60.000 articles de neurosciences sont publiés chaque année, note-t-il. Il y a trop d’informations pour qu’elles puissent être digérées. La seule façon de progresser est d’intégrer systématiquement toutes ces données sous forme numérique pour créer un modèle le plus complet possible. Cela aidera aussi les chercheurs à repérer les manques et les contradictions dans leurs connaissances et identifier les expérimentations nécessaires pour les combler. » Intégrer la complexité, telle est l’idée maîtresse du projet.


Vers un cerveau artificiel à Neuropolis... par sciencesetavenir

En 2008, le calculateur Blue Gene a fait ainsi « tourner » la première colonne corticale (voir Repères) de souris, un réseau vertical de 10.000 neurones. Cette année, 60 colonnes corticales interconnectées ont été modélisées grâce à la version la plus avancée du supercalculateur, d’une puissance de 54 téraflops (54 x 1012 opérations/s). Il s’agit maintenant de construire 10 000 autres colonnes jusqu’à simuler un cerveau de souris entier, et ses 100 millions de neurones. Ce qui demandera une puissance de calcul de un pétaflop (1015), à l’horizon 2014. Puis, l’équipe s’attellera à l’ultime tâche. Faire de même avec le cerveau humain, vers 2023, ce qui exigera un exaflop (1018).

"SALLES DES MACHINES". Pour comprendre concrètement comment ça marche, il faut pousser la porte de la « salle des machines », le laboratoire. Ici, une quinzaine de jeunes chercheurs de 12 pays sont à l’œuvre. Le Danois Jesper Ryge place un échantillon de cerveau de souris sous un étrange microscope, encerclé par une couronne de seringues, le fameux patch-clamp, cher à Henry Markram.

« On stimule l’échantillon avec une électrode, explique-t-il, puis on enregistre les réponses électriques de chaque neurone. » À côté, sur un écran, on peut voir les neurones « répondre » à la stimulation électrique par des tracés rouges réguliers qui s’affichent en temps réel. Une fois des milliers d’enregistrement réalisés, les chercheurs sont en mesure de passer à la modélisation. Là, les biologistes cèdent la place aux physiciens et aux mathématiciens.

« Nous simulons la biophysique des cellules nerveuses, expose l’Allemand Felix Schürmann, physicien, auparavant à l’université de Heidelberg, et désormais bras droit de Henry Markram. Cela signifie que nous décrivons la physique des propriétés électriques des neurones, comme la propagation des courants et du voltage à travers l’arbre dendritique (voir Repères) des neurones, avec différentes équations. Les paramètres de ces équations ayant été extraits de données expérimentales décrites dans de multiples publications. »

CORTEX. Tandis que l’activité intime du neurone est simulée artificiellement, d’autres chercheurs reproduisent sa morphologie. Il existe, en effet, quelque 200 types différents de neurones dans le cortex. C’est ainsi, en agrégeant les données issues de près de 20.000 expérimentations sur vingt ans, que l’équipe a réussi à reconstituer en 3D la cartographie précise d’une petite portion de cortex de souris avec ses caractéristiques physiologiques, géométriques et ses connexions.

« Il faudrait des décennies, voire un siècle, pour cartographier un cerveau entier avec les connexions précises. Il y a en effet 3000 routes différentes possibles pour chaque neurone. On ne peut les explorer toutes ! » reconnaît Henry Markram qui, heureusement, a trouvé le moyen d’accélérer son travail de bénédictin grâce à une découverte publiée dans les Pnas en août 2012. L’équipe a tenté une expérience en positionnant 298 neurones virtuels de différents types selon la disposition et la répartition observées dans un échantillon de cortex vivant. Puis elle a « lancé la machine » et laissé les neurones se connecter comme bon leur semblait ! Résultat ? En comparant l’organisation virtuelle obtenue et le circuit cortical réel de la souris, les chercheurs ont observé une chose extraordinaire : de 75 % à 95 % des points de connexions étaient similaires. « Ça a été un choc, assure Henry Markram. Cela signifie que l’on peut prédire les schémas de connexions synaptiques [le connectome, voir Repères] à partir du moment où la composition et la répartition des neurones du cortex sont connues. »

"BAT LAB". Mais pour construire le futur modèle de cerveau, il n’y a pas que les observations tirées du patch-clamp qui comptent. En cela, une autre branche de Neuropolis va être d’une grande aide. Pour la découvrir, il faut se rendre cette fois aux hôpitaux universitaires de Genève, à trois quarts d’heure de train du campus. Là aussi les grues s’activent. Un nouveau bâtiment, le Bat Lab, va bientôt sortir de terre, au sixième étage duquel s’installera le nouvel Institut d’imagerie moléculaire translationnelle.

Cette unité, placée sous l’égide du professeur Osman Ratib, spécialiste d’imagerie moléculaire, sera un satellite de Neuropolis. Objectif ? « Nous développons des nouveaux outils diagnostiques mais aussi thérapeutiques pour voir les molécules agir dans le cerveau animal, explique Osman Ratib. Nous cherchons par exemple des biomarqueurs spécifiques à certaines sous-catégories de tumeurs cérébrales pour mettre au point des thérapies personnalisées et prédire la réponse au traitement. » Tous ces résultats sont déjà – et seront encore davantage – injectés dans le cerveau virtuel du campus de Lausanne. Dans le cadre de Neuropolis, l’équipe d’Osman Ratib va d’ailleurs se focaliser sur la modélisation d’un cerveau vieillissant et sur les effets des maladies neurodégénératives. Ici aussi, on mise sur la bourse européenne du HBP.

Trop complexe pour certains, le HBP a suscité la polémique

Un autre médecin-chercheur britannique attend beaucoup de Neuropolis. C’est le professeur Richard Frackowiak, spécialiste de l’imagerie clinique au Centre hospitalier universitaire vaudois de Lausanne, autre satellite du projet. Lui, travaille sur le cerveau humain malade. Il est sûr que la méthode de neuro-sciences intégrée « à la Markram » est la solution pour avancer dans la compréhension de maladies comme Alzheimer. « Pour l’instant, on est dans l’impasse car on se focalise sur des petites parties du problème comme les plaques amyloïdes. Grâce au modèle global, nous allons prendre la maladie dans son ensemble. Il en émergera une véritable théorie du cerveau sain mais aussi du cerveau malade. »

"TROP COMPLEXE". Même si cette approche n’est pas partagée par toute la communauté scientifique, des voix s’élevant en Suisse comme ailleurs contre cette démarche jugée « trop complexe ». De fait, dans un article paru dans Nature en février 2012, le HBP a suscité la polémique. Rodney Douglas codirecteur de l’Institut de neuro-informatique de Zurich (Suisse), y exprime son inquiétude : « Nous avons besoin de variance en neurosciences, nous avons besoin de personnes qui expriment des idées différentes, une diversité qui peut être menacée si autant d’argent est consacré à un seul projet. »

Sollicité par courriel, Rodney Douglas n’a cependant pas souhaité répondre à nos questions, préférant jouer l’apaisement. « Clairement, je ne suis pas d’accord avec Henry sur certains problèmes. Néanmoins, il demeure mon collègue et il est regrettable que nos désaccords scientifiques soient polarisés dans la presse. » Il n’empêche : certains scientifiques pensent effectivement que le modèle Blue Brain, trop fourni et détaillé, ne sera pas forcément plus facile à comprendre qu’un cerveau réel. La question qui se pose : que va nous montrer un modèle complexe ? Ou encore, la modélisation du vivant est-elle là pour prédire – comme Blue Brain – ou pour faire comprendre des phénomènes ? Car, s’il s’agit de comprendre, ne vaut-il pas mieux avoir un système simplifié avec un minimum de données à faire varier ?

« Aujourd’hui, nous possédons les mathématiques qui correspondent à cette complexité, il faut cesser d’en avoir peur », rétorque Richard Frackowiak. Patrick Aebischer, lui, estime que les débats sont sains. « La “grande science” a toujours évolué à travers de grands débats, comme pour le séquençage du génome qu’on estimait impensable. » Quant à Henry Markram, il joue la conciliation, affirmant que « notre plateforme sera ouverte à toutes les propositions ».

REPÈRES. Canal ionique : protéine transmembranaire qui permet le mouvement des ions, créant des courants électriques. Neuromédiateur : molécules chimiques libérées par les neurones et agissant au niveau des synapses. In silico : effectué avec l’outil informatique. La bio-informatique correspond à l’approche in silico de la biologie traditionnelle. Colonne corticale : groupe de 10 000 neurones environ situés dans le cortex cérébral qui forme une unité fonctionnelle. Il en existe environ 100.000 dans le cerveau humain. Arbre dendritique : les dendrites (fibres réceptrices des neurones) peuvent former une arborescence très dense. Connectome : carte complète des connexions dans le cerveau.


DOCUMENT       sciencesetavenir.fr      LIEN

 
 
 
 

LE TÉLESCOPE SPATIAL HUBBLE

 


TÉLESCOPE SPATIAL HUBBLE


Instrumentation
Maintenance


Long de 13,3 m pour un diamètre de 4,3 m, et pesant 11,3 t, Hubble est l'un des grands observatoires spatiaux conçus par la NASA. Emporté dans l'espace par l'orbiteur Discovery, il a été satellisé le 25 avril 1990 autour de la Terre, à 612 km d'altitude, sur une orbite inclinée de 28,5° sur l'équateur, qu'il décrit en 95 minutes.
Instrumentation

Sa charge utile comprend un télescope de type Cassegrain, de 2,40 m de diamètre, muni, à son foyer, de deux chambres photographiques : l'une, à grand champ, pour l'observation des planètes, l'autre pour celle des astres de faible luminosité ; de deux spectographes : l'un à haute résolution, l'autre pour les objets faiblement lumineux ; et d'un photomètre ultrarapide. Cette instrumentation focale rend le télescope utilisable dans une gamme d'énergie allant de l'ultraviolet à l'infrarouge. L'Europe a contribué pour 15 % au coût du satellite en développant les panneaux solaires (qui fournissent plus de 4,5 kW de puissance électrique) et la caméra pour objets faiblement lumineux, ou FOC (Faint Objects Camera), capable, grâce à son dispositif de comptage de photons, d'observer des objets 30 fois moins lumineux que ceux qu'on peut observer au sol et, grâce à sa capacité d'agrandissement des images, d'atteindre la limite de résolution du télescope, soit 0,1 seconde d'arc. En échange de leur contribution, les Européens ont accès à 15 % du temps d'observation. Un groupe de chercheurs européens participe aussi à l'exploitation du télescope à l'Institut du télescope spatial, à Baltimore (États-Unis). Conçu pour rester opérationnel pendant au moins 15 ans, le télescope peut être réparé en orbite par des astronautes ou ramené au sol à bord de la navette spatiale pour révision ou une remise en état complètes. On a découvert après sa mise en orbite que son miroir primaire était affecté d'un défaut de courbure (sphéricité trop faible de deux millièmes de millimètre à la circonférence). Cette aberration de sphéricité rendait inexécutables certains programmes d'observation prévus, même si des images remarquables ont pu être obtenues grâce à un traitement informatique poussé.
Maintenance

Un dispositif correcteur appelé COSTAR a été installé à la place du photomètre en décembre 1993, lors d'une mission de la navette. À cette occasion, on a remplacé également la caméra planétaire à grand champ par une autre dotée de composants plus élaborés et d'une optique correctrice intégrée, et l'on a changé les panneaux solaires, dont les vibrations dues aux effets thermiques des passages du satellite d'une zone de jour à une zone de nuit perturbaient le pointage du télescope et réduisaient la partie utilisable de l'orbite. Cette mission correctrice a parfaitement réussi et a rendu à l'instrument ses qualités d'origine ; en particulier, la résolution angulaire et la sensibilité atteignent les valeurs théoriques.
Lors d'une deuxième mission de service, en février 1997, les astronautes ont installé un spectrographe imageur (STIS) ainsi qu'un ensemble de trois caméras associées à un spectromètre opérant dans le proche infrarouge (NICMOS) à la place d'un spectrographe pour objets faiblement lumineux (FOS) et d'un spectrographe à haute résolution (GHRS). Ils ont également changé divers dispositifs des systèmes d'orientation, de stabilisation, de protection thermique ou d'enregistrement des données.
Une troisième mission de service, en décembre 1999, a permis de procéder au remplacement des gyroscopes de l'émetteur radio et d'un des trois capteurs de guidage fin, à l'installation d'un nouvel ordinateur de bord et de régulateurs de puissance pour les batteries, et à la pose de panneaux d'isolation thermique.
En mars 2002, une quatrième mission a poursuivi la maintenance et la modernisation des équipements avec, notamment, l'installation de nouveaux panneaux solaires et d'un nouveau système électrique central, le remplacement de la caméra pour objets faiblement lumineux par une caméra à l'acuité visuelle décuplée (ACS, Advanced Camera for Surveys) et la réactivation du spectromètre infrarouge NICMOS grâce à la réparation de son système de refroidissement.
Une cinquième et ultime mission de service devait intervenir en 2004. Après avoir été annulée, pour des raisons d'économie, elle a été à nouveau acceptée en 2006, pour assurer la mise à niveau et le maintien opérationnel du télescope jusqu'au lancement de son successeur. Intervenue en mai 2009, elle a permis notamment de remplacer les batteries et les gyroscopes défaillants et d'installer deux nouveaux instruments scientifiques plus performants : un spectrographe ultraviolet et une caméra à grand champ.

Pluton et Charon
Les images fournies par le télescope Hubble ont permis de nouvelles découvertes sur les planètes du système solaire. À l'échelle de notre galaxie, elles ont permis d'affiner les connaissances sur la naissance et la mort des étoiles. À plus grande échelle, Hubble a scruté en détail des galaxies actives ou en interaction ; il a permis de mesurer avec précision la distance de galaxies proches et il a découvert des milliers de galaxies lointaines, révélant que la population de galaxies de l'Univers est encore plus nombreuse qu'on ne le pensait.
Le successeur du télescope Hubble, appelé JWST (James Webb Space Telescope, en hommage à celui qui fut l'administrateur de la NASA de 1961 à 1968) est déjà en cours de développement. Celui-ci sera doté d'un miroir segmenté de 6,5 m de diamètre (replié lors du lancement et qui se déploiera après sa mise en orbite), refroidi à très basse température pour opérer principalement dans l'infrarouge, à des longueurs d'onde inaccessibles aux instruments installés au sol. Satellisé à l'un des points de Lagrange du système Terre-Soleil, à 1,5 million de kilomètres de la Terre, il ne pourra être réparé dans l'espace. Son lancement est prévu en 2013.

 

DOCUMENT   larousse.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon