ecole de musique piano
     
menu
 
 
 
 
 
 

Le rôle clé des astrocytes pour le développement cognitif

 

 

 

 

 

 

 

Le rôle clé des astrocytes pour le développement cognitif

COMMUNIQUÉ | 01 JUIL. 2021 - 20H00 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Les astrocytes sont des cellules du cerveau qui ont longtemps été considérées uniquement comme de simples cellules de soutien des neurones. Depuis quelques années, elles sont de plus en plus étudiées, et leur importance pour le fonctionnement du cerveau est peu à peu mis au jour. Des chercheurs de l’Inserm, du CNRS et du Collège de France au Centre interdisciplinaire de recherche en biologie révèlent désormais le rôle crucial de ces cellules dans la fermeture de la période de plasticité cérébrale qui suit la naissance. Les astrocytes auraient une place centrale dans le développement des facultés sensorielles et cognitives après la naissance. A plus long terme, ces travaux permettent d’envisager de nouvelles stratégies pour ré-introduire la plasticité cérébrale chez l’adulte, et ainsi favoriser la rééducation après des lésions cérébrales ou des troubles neuro-développementaux. Ces travaux ont été publiés dans la revue Science.

La plasticité cérébrale est une période transitoire clé où le cerveau, après la naissance, remodèle le câblage des neurones en fonction des stimulations extérieures qu’il reçoit (environnement, interactions…).  La fin – ou fermeture – de cette période marque la stabilisation des circuits neuronaux, associée à un traitement efficace des informations et à un développement cognitif normal. Cela ne signifie pas qu’il n’y a plus aucune plasticité ensuite, mais qu’elle est très réduite par rapport au début de la vie.

Les problèmes qui interviennent pendant la période de plasticité cérébrale peuvent avoir des conséquences importantes à long terme. Ainsi par exemple, si durant cette période un individu souffre d’une pathologie oculaire qui l’empêche de voir correctement, comme par exemple un strabisme, le câblage cérébral qui correspond à cette faculté sera altéré définitivement si l’œil n’est pas soigné à temps.

Afin d’y remédier, les chercheurs ont pour objectif de remodeler ce câblage en identifiant une thérapie qui permettrait de réintroduire la plasticité cérébrale même après la fin du développement. Pour cela, ils cherchent aussi à mieux caractériser les mécanismes biologiques qui sous-tendent la fermeture de la période de plasticité cérébrale.
Des études pionnières des années 1980 ont montré que greffer des astrocytes immatures dans le cerveau d’animaux adultes permettait d’induire à nouveau une période de grande plasticité. L’équipe de la chercheuse Inserm Nathalie Rouach au Centre interdisciplinaire de recherche en biologie (Inserm/CNRS/Collège de France)[1] s’est inspirée de ce procédé pour révéler le processus cellulaire, jusqu’ici inconnu, à l’origine de la fermeture de la période de plasticité.

La greffe d’astrocytes immatures pour réintroduire la plasticité cérébrale
A travers des expériences menées en s’intéressant au cortex visuel de la souris, les chercheurs montrent que la présence des astrocytes immatures est clé pour la plasticité cérébrale. Les astrocytes orchestrent ensuite plus tard dans le développement la maturation d’interneurones[1] pendant la période de plasticité, ce qui aboutit in fine à sa fermeture. Ce processus de maturation a lieu via un mécanisme inédit impliquant l’action de la Connexine 30, une protéine que les chercheurs ont retrouvée en forte concentration dans les astrocytes matures durant la période de fermeture.

 
Le fait de greffer des astrocytes à des souris adultes pourrait-il permettre réintroduire une plasticité cérébrale ?
Afin de répondre à cette question, les chercheurs ont mis en culture des astrocytes immatures issues du cortex visuel de jeunes souris (qui avaient entre 1 et 3 jours). Ils ont ensuite greffé ces astrocytes immatures dans le cortex visuel primaire de souris adultes. Il s’agissait alors d’évaluer l’activité du cortex visuel après quatre jours d’occlusion monoculaire, une technique classique pour évaluer la plasticité cérébrale. Les chercheurs ont alors trouvé que la souris greffée avec des astrocytes immatures présentait un haut niveau de plasticité, contrairement à la souris non greffée.

 « Cette étude nous rappelle qu’en neurosciences nous ne devons pas uniquement nous intéresser aux neurones. Les cellules gliales, dont les astrocytes font partie, régulent la plupart des fonctions du cerveau. Nous avons réalisé que ces cellules ont des rôles actifs. Les cellules gliales sont en effet moins fragiles que les neurones et constituent donc un moyen plus accessible d’intervenir sur le cerveau. », souligne Nathalie Rouach, coordinatrice de l’étude.
Les cellules gliales représentent plus de la moitié des cellules du cerveau. Elles n’ont pas le même lignage cellulaire que les neurones et leurs fonctions sont très différentes.  On pensait jusque récemment qu’elles étaient les « nettoyeuses » du cerveau, mais les chercheurs ont réalisé qu’elles avaient aussi un rôle actif de libération de molécules. Par rapport aux neurones, elles arrivent plus tard dans le développement, n’ont pas le même mode de communication, et sont majoritaires.

Ces travaux sur les astrocytes permettent d’envisager de nouvelles stratégies cellulaires et moléculaires visant à ré-ouvrir une période de plasticité accrue chez l’adulte afin par exemple de favoriser la réadaptation après une lésion cérébrale ou de pallier les dysfonctionnements sensori-moteurs ou psychiatriques issus de troubles neuro-développementaux
 
[1]   Les interneurones établissent des connexions entre un réseau de neurones afférent (qui envoie les informations au système nerveux central) et un réseau de neurones efférents (qui envoient ces informations vers les organes répondant à la stimulation)

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Les cellules souches sanguines ont une mémoire immunitaire et ouvrent des pistes dans la recherche sur le Covid-19

 

 

 

 

 

 

 

Les cellules souches sanguines ont une mémoire immunitaire et ouvrent des pistes dans la recherche sur le Covid-19

COMMUNIQUÉ | 12 MAI 2020 - 9H15 | PAR INSERM (SALLE DE PRESSE)

BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE


Les cellules souches du sang auraient une propriété surprenante. En plus d’assurer le renouvellement continu des cellules sanguines, ces cellules gardent une trace des infections passées pour déclencher une réponse immunitaire plus rapide et plus efficace par la suite, d’après une nouvelle étude co-dirigée par la chercheuse Inserm Sandrine Sarrazin et par le chercheur CNRS Michael Sieweke du Centre d’immunologie de Marseille-Luminy (CNRS/Inserm/Aix-Marseille Université) et du Centre des thérapies régénératives de l’Université technique de Dresde (Allemagne). Cette découverte pourrait avoir un impact significatif sur les futures stratégies de vaccination, notamment celles explorées dans le cadre de la pandémie de Covid-19. Elle permettrait aussi de faire progresser la recherche sur de nouveaux traitements visant à moduler le système immunitaire. Ces résultats ont été publiés dans la revue Cell Stem Cell.

C’est un fait connu de longue date : le système immunitaire adaptatif a une mémoire. Ainsi, les lymphocytes deviennent spécifiques d’un agent pathogène particulier à éliminer après y avoir été exposés lors d’une infection et certains d’entre eux subsistent durablement dans l’organisme. Les principes de la vaccination reposent sur la connaissance de ces mécanismes immunitaires.
Plus récemment, des travaux ont suggéré que le système immunitaire inné, qui permet la défense de l’organisme de façon immédiate suite à une infection, a lui aussi une forme de mémoire. Des chercheurs ont par exemple montré que le système immunitaire inné continue d’être plus efficace en cas de réinfection malgré la durée de vie très courte des cellules immunitaire, comme les monocytes ou les granulocytes. Ils ont alors soupçonné que cette mémoire du système immunitaire inné était en fait inscrite dans les cellules souches sanguines, dont la durée de vie est très longue, et qui sont à l’origine de différentes cellules immunitaires matures.
Pour vérifier cette hypothèse, les chercheurs du Centre d’immunologie de Marseille-Luminy (CNRS/Inserm/Aix-Marseille Université) et du Centre des thérapies régénératives de l’Université technique de Dresde (Allemagne) ont effectué des travaux dont les résultats sont publiés dans Cell Stem Cell. L’équipe a exposé des souris à une molécule de surface de la bactérie E. coli (lipopolysaccharide ou LPS), un agent pathogène largement utilisé pour mimer des infections en laboratoire.

Ensuite, les chercheurs ont transféré des cellules souches sanguines prélevées chez ces animaux à d’autres souris non infectées et dont le système immunitaire avait préalablement été détruit. Le but était de reconstituer entièrement leur système immunitaire à partir de ces cellules souches.
Les chercheurs ont ensuite infecté des souris de ce groupe avec une bactérie vivante de l’espèce P. aeruginosa et ont constaté que le taux de mortalité n’était que de 25 %. Il atteignait en revanche 75 % chez des souris contrôles, dont les cellules souches n’avaient jamais été exposées à un agent pathogène.
« Ce travail démontre de façon forte que les cellules souches sanguines ont une fonction de mémoire qu’on ne soupçonnait pas. Une première exposition à un pathogène les arme pour mieux affronter une prochaine infection», explique Sandrine Sarrazin.

Ce mécanisme n’est pas spécifique d’un agent pathogène puisque, dans une autre expérience, une première exposition des cellules souches sanguines à un antigène viral a protégé les souris contre une exposition secondaire à P. aeruginosa. De manière surprenante, les scientifiques ont donc découvert que la protection apportée par cette mémoire du système immunitaire s’étend au-delà du seul agent infectieux utilisé pour la première infection.
Les chercheurs se sont ensuite intéressés à la manière dont cette mémoire était codée. En étudiant le génome des cellules souches sanguines des souris infectées, ils ont constaté des modifications durables dans son organisation spatiale. Ces changements étaient susceptibles de modifier l’expression de certains gènes impliqués dans la réponse immunitaire innée. « Lors du premier contact avec l’agent pathogène, des gènes requis pour la réponse immunitaire sont en fait durablement mis en avant pour activer rapidement le système immunitaire lors d’une deuxième infection», explique Bérengère de Laval, première auteure de l’étude. Enfin, l’équipe a recherché des molécules impliquées dans ce changement de structure du génome et a découvert qu’une protéine appelée C/EBP bêta jouait un rôle majeur.

Des recherches pertinentes dans la lutte contre le Covid-19 ?
Ces résultats résonnent tout particulièrement en cette période de pandémie du coronavirus SARS-Cov-2.

Des observations récentes suggèrent que le vaccin BCG, connu pour induire lui aussi une mémoire immunitaire innée, agirait également au niveau des cellules souches sanguines et offrirait un certain degré de protection contre les infections respiratoires. Des études sont en cours pour tester son utilité contre le Covid-19.
Les découvertes de l’équipe pourraient éclairer les mécanismes en jeu dans cette protection au niveau moléculaire et ouvrir de nouvelles pistes vaccinales, y compris contre le Covid-19.

« Nos découvertes représentent une contribution majeure à la compréhension de la mémoire du système immunitaire et des fonctions des cellules souches du sang. Elles orientent en outre vers de nouvelles stratégies pour stimuler ou limiter la réponse immunitaire dans divers états pathologiques, et pourraient permettre d’affiner les stratégies de vaccination actuelles pour une meilleure protection face à divers agents pathogènes, y compris contre le SARS-CoV-2 », espère Michael Sieweke.

 

   DOCUMENT        inserm        LIEN

 
 
 
 

Un nouveau gène impliqué dans l’hypertension artérielle

 

 

 

 

 

 

 

Un nouveau gène impliqué dans l’hypertension artérielle

COMMUNIQUÉ | 19 FÉVR. 2018 - 10H12 | PAR INSERM (SALLE DE PRESSE)

GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE


Une équipe de chercheurs dirigée par Maria-Christina Zennaro, directrice de recherche Inserm au sein du Paris Centre de Recherche Cardiovasculaire (Inserm/ Université Paris-Descartes), en collaboration avec des collègues allemands[1], a identifié un nouveau gène impliqué dans l’hypertension artérielle. Cette étude a été publiée dans Nature Genetics.
Ces nouveaux résultats soulignent l’importance du terrain génétique dans la  survenue  des  maladies communes et confortent l’intérêt du déploiement du Plan France Médecine Génomique 2025. L’un de ses objectifs consiste effectivement à permettre l’accès au dépistage génétique, même pour des pathologies communes, pour proposer une médecine individualisée.

L’hypertension artérielle est un facteur de risque cardiovasculaire majeur, qui touche jusqu’à 25% de la population. Dans environ 10% des cas, elle est due au dysfonctionnement de la glande surrénale qui produit en excès l’aldostérone, une hormone qui régule la pression artérielle. On parle alors d’hyperaldostéronisme primaire. Les patients touchés par cette maladie ont une hypertension souvent grave et résistante aux traitements habituels. Ces patients ont aussi plus de risques de développer des accidents cardiovasculaires, notamment des infarctus du myocarde et des AVC.
Afin de mieux comprendre les causes de cette maladie, Maria-Christina Zennaro et Fabio Fernandes-Rosa, chercheurs Inserm à Paris, ont analysé les exomes (la part du génome codant pour les protéines) de patients atteints d’hyperaldostéronisme primaire avant l’âge de 25 ans. Cette approche a permis d’identifier une mutation dans un gène jusqu’à alors inconnu, CLCN2. Ce gène code pour un canal chlorure, dont la présence et les effets dans la glande surrénale étaient alors inconnus.

Une production autonome d’aldostérone
Grâce à leur partenariat avec une équipe allemande dirigée par Thomas Jentsch à Berlin, les chercheurs ont étudié les mécanismes par lesquels cette mutation pouvait induire une production autonome d’aldostérone et déclencher une hypertension artérielle. Ils ont découvert que la mutation entrainait une ouverture permanente du canal chlorure.
Dans un modèle animal, les chercheurs ont montré que ce canal est justement exprimé dans la zone des surrénales produisant l’aldostérone. Par des expériences d’électrophysiologie et de biologie cellulaire, ils ont montré que l’influx de chlorure à travers le canal muté aboutissait à une augmentation des flux de chlorure et une dépolarisation de la membrane cellulaire. Les cellules de cortex surrénalien produisent alors plus d’aldostérone en présence du canal muté et expriment d’avantage les enzymes impliqués dans sa biosynthèse.
Cette découverte révèle un rôle jusqu’alors inconnu d’un canal chlorure dans la production d’aldostérone. Elle ouvre des perspectives tout à fait nouvelles dans la pathogenèse et la prise en charge de l’hypertension artérielle.

[1] Du Leibniz Institute for Molecular Pharmacology (FMP) et Max Delbrück Center for Molecular Medicine (MDC) à Berlin.

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Identification d’un réseau d’aires cérébrales impliqué dans les mathématiques

 

 

 

 

 

 

 

Identification d’un réseau d’aires cérébrales impliqué dans les mathématiques

COMMUNIQUÉ | 20 AVRIL 2016 - 15H07 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Deux chercheurs de l’unité mixte CEA / Inserm / Université Paris-Sud et du Collège de France au centre de recherche en neuro-imagerie, NeuroSpin, viennent de révéler que le cerveau possède un réseau d’aires cérébrales impliqué dans les mathématiques de haut niveau comme dans les opérations arithmétiques les plus simples. Ce réseau s’active à la seule vue de nombres chez une population de haut niveau universitaire, experte ou non en mathématiques. Ces résultats, publiés dans les PNAS, ont été obtenus en IRM fonctionnelle chez des universitaires spécialistes de mathématiques ou d’autres disciplines.
 
Peut-il y avoir une pensée sans langage ? L’imagerie cérébrale permet aujourd’hui de poser cette question en laboratoire. Dans le but de déterminer quelles aires cérébrales sont impliquées dans la réflexion mathématique de haut niveau, des neuroscientifiques (NeuroSpin, CEA/Inserm/Université Paris Sud Saclay, Collège de France) ont étudié le cerveau d’une quinzaine de mathématiciens professionnels par IRM fonctionnelle (IRMf). Les images d’IRMf ont été acquises alors qu’ils réfléchissaient pendant 4 secondes à des affirmations mathématiques et non-mathématiques de haut niveau, afin de les juger vraies, fausses ou absurdes. Lorsque leur réflexion portait sur des objets mathématiques, un réseau dorsal pariétal et frontal du cerveau était activé, réseau qui ne présentait aucun recouvrement avec les aires du langage. A l’inverse, lorsqu’on leur demandait de réfléchir à un problème d’histoire ou de géographie, le réseau qui s’activait était complètement différent des régions mathématiques et impliquait certaines aires du langage.

Comparaison des régions du cerveau activités par une activité mathématique et par une activité langagière chez les mathématiciens et les non-mathématiciens.
Une activité mathématique active les régions du cerveau représentées en bleu chez les mathématiciens tandis qu’une activité langagière active les régions représentées en vert sur cette figure chez des mathématiciens et des non mathématiciens. Ces régions ne se recouvrent pas.
© M.Amalric/CEA

Le réseau d’aires cérébrales mis au jour dans cette étude n’est pas seulement impliqué dans les mathématiques de très haut niveau, mais également dans le traitement du nombre et du calcul mental. Les chercheurs ont d’ailleurs pu observer que ce réseau s’activait également en réponse à la simple vue de nombres ou de formules mathématiques chez les mathématiciens professionnels comme chez les non-mathématiciens (des chercheurs de même niveau universitaire, mais sans formation scientifique) qui avaient participé à cette expérience.

Des études récentes suggèrent de plus que ce réseau est déjà impliqué dans l’identification du nombre chez les jeunes enfants non encore scolarisés, et qu’il est très ancien dans l’évolution car il est présent lorsque des singes macaques reconnaissent des objets concrets. Cela suppose que ce réseau d’aires cérébrales préexiste à l’apprentissage des mathématiques à l’école, et qu’il se développe ensuite avec l’éducation que l’on reçoit. En effet, les chercheurs ont  constaté que l’activation des régions de ce réseau était amplifiée chez les mathématiciens par rapport aux non-mathématiciens. Cette observation coïncide avec la théorie du recyclage neuronal, développée par Stanislas Dehaene, et qui stipule que les activités culturelles de haut niveau, telles que les mathématiques, recyclent des fondations cérébrales très anciennes dans l’évolution, telles que le sens du nombre, de l’espace ou du temps.
Il existe ainsi un réseau mathématique dans le cerveau, qui n’est pas celui du langage. Ce résultat concorde avec d’autres observations, par exemple le fait que certains enfants ou adultes, qui disposent d’un vocabulaire numérique très pauvre, soient capables de réaliser des opérations arithmétiques avancées, ou encore que certains patients aphasiques[1] puissent encore faire du calcul et de l’algèbre.
 
Dans le débat séculaire de la pensée sans langage, les mathématiques ont un statut particulier. Pour certains, tel Noam Chomsky, l’activité mathématique a émergé chez l’Homme comme conséquence de ses capacités pour le langage. La plupart des mathématiciens et physiciens pensent au contraire que la réflexion mathématique est indépendante du langage, tel Albert Einstein qui affirmait : « les mots et le langage écrits ou parlés ne semblent jouer aucun rôle dans mon mécanisme de pensée. Les briques de base de ma pensée sont au contraire des signes ou des images, plus ou moins clairs, que je peux reproduire et recombiner à volonté ».
 
[1] Patient aphasique : qui a perdu la maîtrise du langage. Ce trouble peut aller d’une incertitude sur les mots à une perte totale d’expression par le langage mais le patient peut écrire.

 

 DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon