ecole de musique piano
     
menu
 
 
 
 
 
 

LES CAUSES SYNAPTIQUES DE L'AUTISME

 

 

Paris, 30 avril 2012

Un modèle de souris pour comprendre les causes synaptiques de l'autisme


L'autisme, grande cause nationale 2012, sera un sujet d'actualité en France tout au long de l'année. Paradoxalement ce syndrome, et surtout ses origines, restent mal connus. Une étude, publiée le 29 avril 2012 dans la revue Nature, présente la première caractérisation neurobiologique et comportementale d'une souris mutée pour le gène SHANK2 qui est associé à l'autisme chez l'homme. En février dernier, l'équipe du Pr Thomas Bourgeron avait démontré que des mutations génétiques dans SHANK2 identifiées chez des patients avec autisme perturbaient le nombre de synapses, points de contact entre les neurones. Ces nouveaux résultats obtenus sur des souris mutantes pour SHANK2 confirment la diminution des synapses et pointent des anomalies spécifiques de certaines régions du cerveau. De plus, les souris sont hyperactives, elles présentent des problèmes d'interactions sociales et vocalisent moins et différemment que les souris non mutées. Ces résultats permettent de mieux comprendre l'origine neurobiologique des troubles du spectre autistique. Ils sont le fruit d'une collaboration franco-allemande entre une équipe de l'unité de Génétique humaine et fonctions cognitives (Institut Pasteur/CNRS/Université Paris Diderot) et des chercheurs de l'université d'Ulm (Allemagne) et du centre de Neuroscience de Berlin (Allemagne).
Les troubles du spectre autistique (TSA) regroupent un ensemble hétérogène de maladies du développement neurologique dont les origines génétiques sont mal connues. Des mutations dans plus d'une centaine de gènes ont déjà été associées aux TSA, mais il est difficile d'évaluer leurs rôles précis dans les fonctions neurales et de hiérarchiser leur importance relative. Les analyses génétiques menées au sein de l'unité de Génétique humaine et fonctions cognitives (Institut Pasteur/CNRS/Université Paris Diderot) ont permis de mettre en évidence des mutations dans des gènes codants des protéines localisées au niveau des synapses, les points de contact et de communication entre les neurones. Un de ces gènes, SHANK2, a été associé récemment à l'autisme et a permis de confirmer le rôle des anomalies synaptiques dans l'autisme1.

Les nouveaux résultats publiés le 29 avril 2012 dans la revue Nature montrent l'effet de la perte de ce gène SHANK2 chez la souris. Les chercheurs du groupe de Tobias Boeckers (Ulm, Allemagne) ont montré que les souris mutées dans le gène SHANK2 avaient moins de synapses que les souris non mutées. L'analyse comparée de plusieurs régions du cerveau a montré que l'impact de la mutation différait selon les régions du cerveau (impact fort dans le striatum, modéré dans l'hippocampe et faible dans le cortex). D'autre part, le groupe de Michael R. Kreutz (Berlin, Allemagne) a montré que les courants synaptiques sont aussi différents.

Enfin, le comportement de la souris a été étudié par le Dr Elodie Ey dans l'équipe du Pr Thomas Bourgeron, chef de l'unité de Génétique humaine et fonctions cognitives (Institut Pasteur/CNRS/Université Paris Diderot). Les souris ne montrent pas de problèmes physiques majeurs ni de problèmes de mémoire. Par contre, elles sont hyperactives et plus anxieuses par rapport aux souris non mutées. De façon intéressante, les souris présentent aussi des problèmes d'interactions sociales ainsi qu'une baisse du nombre et une altération de la structure des vocalisations ultrasonores. Le rôle de ces vocalisations ultrasoniques n'est pas encore bien compris mais le fait qu'elles soient quantitativement et qualitativement différentes chez les souris mutantes ouvre de nouvelles voies pour l'étude plus approfondie des mécanismes sous-jacents à la communication vocale.

"L'établissement de modèles animaux est crucial pour comprendre les origines multiples de l'autisme" explique le Pr Thomas Bourgeron, chef de l'unité de Génétique humaine et fonctions cognitives. (Institut Pasteur/CNRS/Université Paris Diderot). "Nous espérons qu'ils permettront d'identifier de nouveaux traitements basés sur les connaissances acquises".

Cette étude a été financée grâce au concours de Baustein,  la Fondation de France, l'Agence Nationale de la Recherche (ANR), Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, Einstein Foundation, Neuron-ERANET, la Fondation Orange et la Fondation FondaMental.

DOCUMENT         CNRS          LIEN

 
 
 
 

RESTAURER LE RYTHME CARDIAQUE

 

Paris, 13 JUILLET 2011

Une nouvelle technique pour restaurer le rythme cardiaque
Un choc électrique de grande amplitude, souvent douloureux, est la seule méthode pour traiter certains cas d'arythmie cardiaque chronique. Une nouvelle technique reposant sur des impulsions beaucoup plus faibles a été conçue par une collaboration internationale de physiciens et de cardiologues (1) impliquant notamment Alain Pumir, chercheur CNRS au Laboratoire de physique de l'ENS Lyon (CNRS/ENS Lyon/Université Lyon 1). Testée in vivo, elle s'est avérée efficace pour restaurer le rythme cardiaque chez des animaux souffrant de fibrillations auriculaires (arythmies les plus fréquentes dans le monde). Même s'il reste à la tester sur des patients, ces premiers résultats sont encourageants et pourraient permettre d'imaginer des méthodes de défibrillation indolores. Ces travaux sont publiés le 14 juillet 2011 dans la revue Nature.
Avec plus de 10 millions de personnes touchées en Europe et aux États-Unis, la fibrillation auriculaire (ou atriale) est le plus fréquent des troubles du rythme cardiaque. Cette arythmie (2) correspond à une action non coordonnée de certaines cellules du muscle cardiaque. Des impulsions électriques peuvent alors se propager de manière chaotique dans le cœur, empêchant les contractions régulières de l'organe, et donc le transport de sang dans l'organisme. Pour réduire la fibrillation auriculaire et tenter de restaurer un rythme cardiaque normal, l'utilisation de médicaments est loin d'être suffisante. La méthode la plus efficace reste l'application d'un choc électrique externe (via un défibrillateur). La défibrillation consiste à faire passer volontairement et brièvement un courant électrique dans le cœur afin de restaurer rythme cardiaque normal. Cette impulsion électrique de grande intensité (champ électrique élevé) peut endommager les tissus et est souvent perçue comme très douloureuse. Jusqu'à présent, il était impossible de réduire son intensité sans prendre le risque que la défibrillation ne fonctionne pas.

Les chercheurs ont tout d'abord étudié les interactions entre le champ électrique et les tissus cardiaques. Imposer un champ électrique élevé (cas des défibrillateurs classiques) permet de générer des ondes dans le tissu cardiaque, principalement à partir des vaisseaux. Cet ensemble d'ondes s'annule ensuite, ce qui permet de restaurer le rythme cardiaque. Avec un champ électrique plus faible, les chercheurs ont supposé que moins de sources seront excitées. Leur hypothèse de travail a été la suivante : il faut réitérer à plusieurs reprises le choc électrique. C'est ce qu'ils ont ensuite vérifié in vivo. Utilisant un cathéter cardiaque classique, les chercheurs ont appliqué une série de cinq impulsions de faible intensité dans le cœur animal. Après quelques secondes, ce dernier battait à nouveau de manière régulière. Baptisée « LEAP » (pour Low-Energy Anti-fibrillation Pacing), leur nouvelle technique fonctionne sur le même principe que les défibrillateurs existants, tout en provoquant une réponse très différente dans le cœur. Peu après le choc électrique, le tissu cardiaque ne peut plus transmettre aucun signal électrique ; l'activité chaotique est terminée. Le cœur reprend alors son activité normale.

LEAP utilisant des champs électriques faibles, cette nouvelle technique serait moins douloureuse et moins dommageable pour le tissu cardiaque que les défibrillateurs existants (réduction de 80 % de l'énergie nécessaire). Autre atout, elle permet de restaurer le rythme cardiaque plus progressivement que les techniques actuelles. Chaque impulsion active davantage de tissus, permettant une suppression progressive de l'activité turbulente du cœur. Les vaisseaux sanguins ou autres « hétérogénéités » cardiaques, comme les défauts d'orientations des fibres cardiaques, agissent comme des centres de contrôle : une fois activés, ils permettent de « reprogrammer » le cœur.

Pour parvenir à ces résultats, les chercheurs se sont donc intéressés à la compréhension fine de l'effet du champ électrique sur le muscle cardiaque. Alain Pumir a apporté son expertise de physicien dans ce travail. Les expériences menées par Stefan Luther et Eberhard Bodenschatz au Max-Planck-Institut en Allemagne, Flavio Fenton et Robert Gilmour à l'Université Cornell aux États-Unis, et leurs collègues se sont appuyées sur des techniques de visualisation à haute résolution temporelle ou spatiale. Complétées par des simulations numériques, elles ont permis d'élucider de manière très précise les phénomènes impliqués.

Démontrés chez l'animal pour des fibrillations auriculaires, ces résultats pourraient également s'appliquer au traitement des fibrillations ventriculaires, une arythmie mortelle. LEAP pourrait alors permettre d'éliminer la douleur, d'améliorer le taux de succès du traitement, et de prolonger la durée de vie des batteries des défibrillateurs implantés ou externes actuellement utilisés. Prochaine étape : tester ce dispositif sur des patients, avant d'espérer développer de nouvelles thérapies pour traiter les arythmies cardiaques.

DOCUMENT        CNRS          LIEN

 

 
 
 
 

LA VIE EN TRANSPARENCE

 

Paris, 4 mai 2012

« Imagerie biomédicale, la vie en transparence » - Une exposition-dossier du CNRS au Musée des arts et métiers


IRM, ultrasons, rayons X, imagerie nucléaire ou optique, magnétoencéphalographie… Le CNRS propose au public d'aborder l'imagerie biomédicale sous ses différents aspects, grâce notamment à des dispositifs interactifs inédits du corps en réalité augmentée. Une exposition-dossier à découvrir au Musée des arts et métiers à Paris jusqu'au 6 janvier 2013.
Voilà trente ans, les imageurs par résonance magnétique (IRM) ont été utilisés pour la première fois au service de la médecine. C'est une des dernières révolutions dans l'histoire de l'imagerie médicale, débutée en 1895 avec la radiographie. Après les simples « photographies » de l'intérieur du corps humain, fournissant des informations sur la structure osseuse ou la forme des différents organes, l'imagerie médicale offre aujourd'hui une vue imprenable sur ces mêmes organes en train de fonctionner et permet de visualiser le métabolisme cellulaire. Elle facilite ainsi l'étude de nombreux processus naturels comme le vieillissement et le diagnostic de maladies (détection du cancer et de certaines affections neuro-dégénératives). Désormais, ces outils sont essentiels pour soigner les patients avec une meilleure efficacité.

L'exposition « Imagerie biomédicale, la vie en transparence », proposée par le CNRS au Musée des arts et métiers jusqu'au 6 janvier 2013, présente les multiples utilisations et applications de l'imagerie biomédicale. Panneaux, films documentaires et films en 3D permettent de comprendre les différents types d'imagerie, leurs principes, leurs enjeux, leurs avantages et leurs limites. Un échographe et deux dispositifs interactifs invitent chacun à voyager à travers le corps humain et à explorer son propre corps. L'exposition met également en lumière les différents apports de l'imagerie biomédicale à la société grâce aux progrès spectaculaires de la recherche.

1/ Un espace de connexion
La galerie d'images
Des mains en mouvement incitent le visiteur à rejoindre l'exposition en parcourant une galerie d'images obtenues par IRM, ultrasons, rayons X, imageries nucléaires et optiques.
« Le corps fragmenté »
Ce dispositif constitue une introduction à l'exposition-dossier. Dans un couloir, le visiteur traverse une série d'écrans sur lesquels est projetée l'image d'un corps fragmenté, de la tête aux pieds, obtenue par résonance magnétique.

2/ Un espace de compréhension
La fresque de l'imagerie biomédicale
Dans la salle d'actualités, une fresque décrit les différents types d'imagerie en avançant, pour chacune, ses principes, ses enjeux, ses avantages et ses limites.
« Premières intimités de l'être »
L'installation propose au visiteur de faire apparaître son « reflet » IRM, X ou nucléaire sur les miroirs augmentés de la vitrine centrale. A l'envi, le visiteur peut entrer ou sortir de ce corps reflété.
Atelier ultrasons
Devant un dernier miroir, la sonde ultrasonore d'un échographe Philips permet au visiteur d'expérimenter les gestes du médecin et d'explorer lui-même son corps.
Les fantômes de l'imagerie biomédicale
Certains objets tests utilisés pour éprouver la faisabilité, la sensibilité, la précision et la reproductibilité d'une nouvelle technique d'imagerie (aussi appelés « fantômes ») sont exposés en vitrine.
Des films sont diffusés en 3D et 2D : Histoire de l'imagerie biomédicale, L'os en pixels...

3/ Un espace de liaison : un quizz sur écran tactile
A la sortie, le visiteur peut parcourir de nouveau l'exposition avec un jeu de questions sur l'imagerie biomédicale pour tester les connaissances qu'il aura acquises au cours de sa visite.

DOCUMENT            CNRS          LIEN

 
 
 
 

VIEILLESSEMENT DU CERVEAU

 

 

Paris, 15 avril 2012

Vieillissement du cerveau : des modifications génétiques identifiées
L'hippocampe est une structure cérébrale dont la réduction du volume avec l'âge est associée aux troubles de mémoire. L'accélération de ce phénomène est une des manifestations de la maladie d'Alzheimer. Grâce à une collaboration internationale impliquant des équipes de recherche françaises (1), des mutations génétiques associées à la réduction du volume de l'hippocampe ont été mises en évidence. Ces résultats ont été obtenus grâce à des études épidémiologiques analysant les génomes et les IRM cérébrales de 9232 participants âgés de 56 à 84 ans. En France, environ 2000 IRM ont été réalisées à travers l'étude des 3 Cités (2). Les résultats de ce travail sont publiés le 15 avril 2012 dans la revue Nature Genetics.
Des réductions du volume de l'hippocampe apparaissent avec l'âge sous l'effet cumulatif de divers facteurs. L'atrophie hippocampique étant un marqueur biologique reconnu de la maladie d'Alzheimer, il était important pour les chercheurs de déterminer l'origine de ce processus.

Une étude internationale pilotée en France par Christophe Tzourio  a cherché les variabilités génétiques associées à la réduction du volume de l'hippocampe. Pour cela, les génomes et les données IRM de plus de 9000 personnes âgées de 56 à 84 ans, ont été analysés afin de détecter une association éventuelle entre certaines mutations et la diminution du volume de l'hippocampe. Les données des participants (avec et sans démence) ont été extraites de huit grandes cohortes européennes et nord-américaines.

Les chercheurs ont tout d'abord pu repérer 46 différences dans la séquence de l'ADN des participants a priori associées à une réduction du volume de l'hippocampe. Dix-huit  mutations situées sur des régions différentes du chromosome 12 sont de manière significative associées à une réduction du volume de l'hippocampe. Les associations restantes ont inclus une mutation sur le chromosome 2. Enfin, une dernière mutation sur le chromosome 9 a été, quant à elle, associée à une réduction de l'hippocampe dans un troisième échantillon plus jeune. Ces résultats signifient que des facteurs « encore non identifiés » déclenchent des mutations dans des endroits bien précis du génome qui entrainent la réduction du volume de l'hippocampe.

Une fois les mutations mises en évidence, les scientifiques ont cherché ce qu'elles modifiaient. Ils ont découvert qu'elles changeaient la structure de gènes importants aux fonctions multiples impliqués entre autres dans la mort cellulaire (HRK) ou le développement embryonnaire (WIF1), le diabète (DPP) ou encore la migration neuronale (ASTN2).

" Cette étude marque un tournant majeur car elle confirme que des facteurs génétiques sont associés à une structure cérébrale, l'hippocampe, impliquée dans les démences et d'une façon beaucoup plus générale dans le vieillissement cérébral ", explique Christophe Tzourio. Cette nouvelle approche, dans laquelle on étudie non pas une maladie mais une région cérébrale cible va permettre de décrypter de manière plus précise les mécanismes de la maladie d'Alzheimer.
 
Les prochaines étapes viseront à mieux comprendre comment ces mutations génétiques s'inscrivent dans le schéma général de la maladie d'Alzheimer. Même si les retombées cliniques ne sont pas à attendre immédiatement, ces découvertes sont un pas vers une meilleure compréhension de cette maladie et du vieillissement cérébral en général.

"Cette découverte confirme l'importance de réaliser des examens sophistiqués comme l'IRM cérébrale et l'étude du génome au sein des études de cohorte. Cela ne peut se faire que dans une forte collaboration entre ces disciplines", conclut Christophe Tzourio.

Pour en savoir plus : Ces résultats sont confirmés dans un second article (“Identification of common variants associated with human hippocampal and intracranial volumes” http://dx.doi.org/10.1038/ng.2250) issu d'un autre grand consortium de recherche et à paraitre dans le même numéro de la revue Nature.

DOCUMENT           CNRS         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon